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Abstract: 

Rapid Serial Visual Presentation (RSVP) decoding 
paradigms allow testing a greater number of conditions 
than was previously possible within short experimental 
sessions. However, in these designs individual neural 
responses may be more susceptible to noise due to 
responses overlapping with adjacent epochs. This study 
investigates the minimum number of repetitions required 
for reliable decoding accuracies in RSVP decoding 
paradigms. We used previously published EEG data and 
conducted a standard decoding analysis while varying 
the number of repetitions used. We found that it is 
possible to obtain reliable decoding accuracies with only 
around six repetitions of each condition, which has 
important implications for research questions that 
require short experiments, particularly for studying 
populations who may not be able to tolerate longer or 
more demanding protocols. These findings highlight the 
potential benefits of using efficient RSVP decoding 
designs and conducting short experiments and may 
have far-reaching impacts in cognitive neuroscience, by 
providing insights into optimizing data collection 
methods for diverse populations and experimental 
protocols. 
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Introduction 

Recent interest has emerged in combining decoding 
approaches with rapid serial visual presentation 
(RSVP) designs as an efficient means of obtaining 
substantial amounts of neural data. RSVP decoding 
paradigms have the potential to test a greater number 
of conditions than was previously possible within short 
experimental sessions, making these methods highly 
desirable for visual perception studies (see e.g., 
Grootswagers et al., 2021, 2022; Shatek et al., 2022) or 
studies that investigate how the brain processes 
temporal sequences (Grootswagers et al., 2019; King & 
Wyart, 2021; Marti & Dehaene, 2017; Mohsenzadeh et 
al., 2018; Robinson et al., 2019). 

However, while RSVP decoding enables the 
presentation of many stimuli in quick succession, 
individual neural responses may be more susceptible to 
noise due to responses overlapping with adjacent 
epochs, and strong masking effects (Robinson et al., 

2019). Therefore, it remains unclear how many 
repetitions are necessary to obtain dependable 
decoding results. The aim of the current study was to 
establish the minimum number of repetitions required in 
RSVP decoding designs. The resulting lower bound 
estimates on repetition numbers will be informative for 
a broad range of future experimental studies. 

Methods 
We used previously published electroencephalography 
(EEG) data which investigated the neural basis of visual 
object recognition using RSVP decoding 
(Grootswagers et al., 2019). The original study (n=16) 
comprised 200 visual objects presented in random 
order in 40 sequences at 5Hz with a duration of 200ms 
each. We applied a minimal preprocessing pipeline in 
EEGlab (Delorme & Makeig, 2004), which consisted of 
a high-pass filter at 0.1Hz, low-pass filter at 100Hz, and 
downsampling to 250Hz. To segment the data, we 
created epochs that were locked to each individual 
stimulus presentation, ranging from 100 before to 
600ms following stimulus onset. Note that these 
preprocessing steps are the same as those employed 
in the original study (Grootswagers et al., 2019). 

To classify between the 200 different visual stimuli, 
we conducted a sliding window time-series decoding 
analysis (Grootswagers et al., 2017), using a leave-
one-sequence-out cross-validation scheme and a 
regularized Linear Discriminant Classifier implemented 
in the CoSMoMVPA toolbox (Oosterhof et al., 2016). To 
estimate the minimum number of repetitions required to 
fit the LDA classifiers, we incrementally added single 
sequences as each sequence contains one repetition of 
every stimulus, starting with the first three sequences 
up to the maximum of 40 sequences. This approach 
enabled us to simulate having stopped the original 
experiment earlier, while assessing the robustness and 
consistency of the results at each stage. All materials to 
reproduce these results are publicly available: 
https://github.com/Tijl/RSVP-repetitions-test 
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Figure 1. A. Time-varying subject-averaged decoding 

accuracies. Brighter colours indicate higher accuracies 
and rows show the results of different numbers of 

repetitions. B. Statistical thresholding of the results in 
(A) shows where reliable decoding effects are present 
in the data. C. Comparison of accuracies as a function 

of the number of repetitions at one time point, the 
average peak decoding time in (A), including 95% 

confidence intervals across subjects. D. Correlating 
the decoding time course obtained at each number of 
repetitions with the full dataset shows how similar the 

decoding trajectories are the complete dataset. 

Results 

The relationship between the number of repetitions and 
decoding accuracy are presented in Figure 1. Our 
results showed that increasing the number of 
repetitions leads to improved decoding accuracy. We 
firstly observed a fast increase in decoding accuracy as 
the number of repetitions increased, with smaller gains 
after around 15 repetitions (Fig. 1A). To assess the 
reliability of the decoding effects, we applied statistical 
thresholding to the results (Fig. 1B). This analysis 
revealed that the decoding effects were reliable starting 
from about six repetitions, and the number of above-
chance points increased thereafter. 

To further explore the relationship between the 
number of repetitions and decoding accuracy, we 
compared accuracies as a function of the number of 
repetitions at the average peak decoding time (Fig. 1C). 
We found that the decoding accuracy increased as the 

number of repetitions increased, but that the variance 
also grew with higher numbers of repetitions. 

Finally, to examine the extent to which the decoding 
trajectories obtained at each repetition increase 
resembled the complete dataset, we correlated the 
decoding time course obtained at each number of 
repetitions with the full dataset (Fig. 1D). We observed 
a high degree of similarity between the decoding 
trajectories obtained at each number of repetitions and 
the full dataset, starting at 0.4 for 3 repetitions, but 
quickly increasing to 0.77 at 6 repetitions. 

Discussion 
This study has revealed that it is possible to obtain 
reliable decoding accuracies using as little as six 
repetitions, which in the original study was achieved in 
about 4 minutes (40 seconds per RSVP sequence). 
This observation is consistent with similar investigations 
that were performed on trial numbers in non-RSVP 
studies (Teichmann et al., 2022). This result has 
important implications for research questions that 
require short experiments. This is particularly relevant 
for studying populations who may not be able to tolerate 
longer or more demanding protocols. For instance, our 
findings have practical implications for the recent 
increased interest in time-resolved decoding studies in 
infants (Ashton et al., 2022; Bayet et al., 2020; Xie et 
al., 2022). Our results suggest only five minutes of 
RSVP data may be sufficient obtain accurate results 
which highlights RSVP designs as a promising future 
avenue for studying visual perception in infants who do 
not tolerate long experiments. 

On the other hand, the low number of required 
repetitions per stimulus allows for massively scaling up 
the overall number of stimuli used in a single study. For 
example, recent work recorded EEG data 12 repetitions 
of 1854 object concepts in a one-hour study 
(Grootswagers et al., 2022), and the current results can 
be used to guide the collection of future large datasets 
using similar paradigms. Overall, our work highlights 
the potential benefits of using efficient RSVP decoding 
designs in large condition-rich, or in short powerful 
experiments. These findings could have wide-reaching 
impacts in cognitive neuroscience, by providing 
guidance into optimizing data collection methods for 
diverse populations and experimental protocols. 
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