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A large number of papers in Computational Cognitive Neuroscience are developing and
testing novel analysis methods using one specific neuroimaging dataset and problematic
experimental stimuli. Publication bias and confirmatory exploration will result in overfitting
to the limited available data. We highlight the problems with this specific dataset and
argue for the need to collect more good quality open neuroimaging data using a variety
of experimental stimuli, in order to test the generalisability of current published results,
and allow for more robust results in future work.
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BACKGROUND

How many ways are there to look at one set of data? In a highly influential paper (Kriegeskorte
et al., 2008b) compared human fMRI responses to electrophysiological recordings from Monkey
inferior temporal cortex (obtained from Kiani et al., 2007), revealing a striking similarity in
the representations of objects between species (Kriegeskorte et al., 2008b). In addition, this
study introduced the Representational Similarity Analysis (RSA) framework (Kriegeskorte et al.,
2008a) to compare information representations between fMRI and electrophysiological recordings.
This framework is now a widely used method for comparing information across modalities
(Kriegeskorte and Kievit, 2013). The RSA framework was later used in a landmark study that
used MEG and fMRI to track object representations in space and time (Cichy et al., 2014). For
ease of comparing their results, this study used the same stimulus set (Figure 1) as Kriegeskorte
et al. (2008b). So far so good, but these stimuli and corresponding fMRI and MEG data have now
formed the basis for over 35 publications (estimated by going through a Scopus list of citations to
these papers; Figure 2). These studies have yielded important information about how new analysis
methods can be used to give insight into the visual system. Yet, it is undeniable that overuse of
the same stimuli and data will eventually lead to a bias in the literature. A major factor to consider
when designing a study is how generalisable the findings will be. Any one study is characterised
by details (and limitations) of the experimental design, data collection, and analyses. Analysing the
same sets of data in different ways or using the same stimulus sets will lead to over-representation
and over-generalisation of experiment-specific trends. The intention of this commentary is not to
undermine or refute any of these studies, but rather to point out that the field needs to diversify.
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A PROBLEMATIC STIMULUS SET

The stimulus set described above consists of 92 segmented visual
objects of animals, people, places, and things (Figure 1). At
first glance, there is nothing wrong with the set itself. To study
object representations, we need stimuli, but controlling for all
possible covariates in a set of stimuli is challenging, thus no set
is perfect. In fact, the 92 objects were a considerable advance
over previous work that had stronger limits imposed by the
experimental designs. However, there are still issues with this
set, as highlighted in Figure 1. Some stimuli were reported to
be ambiguous (Kriegeskorte et al., 2008b). Some do not, on
close inspection, belong in the manually specified categories, for
example an image of hair is classified as “human body.” There are
also clear categorical differences between simple image features
that covary with the imposed category structure. For example,
many animate stimuli contain faces, which on average are
visually more similar than stimuli within the inanimate category
(Figure 1). These reliable visual similarities likely lead to large-
scale pattern differences in neuroimaging data (cf. Vanrullen,
2011), which could account for the strong animate-inanimate
distinction that is often observed in studies that used the 92-
object stimuli (e.g., Kriegeskorte et al., 2008b; Carlson et al., 2013;
Cichy et al., 2014; Kaneshiro et al., 2015; Grootswagers et al.,
2018), and is less prominent in studies that used stimulus sets that
controlled for systematic visual differences (e.g., Rice et al., 2014;
Bracci and Op de Beeck, 2016; Proklova et al., 2016, 2019; Long
et al., 2018; Grootswagers et al., 2019).

These limitations would not constitute a huge problem on
their own. They could be addressed in follow-up work that
replicates results using a different stimulus set, or a set that
specifically controls for the issues above. Indeed, several studies
have used variations or entirely different sets to highlight
contrasting and complementary findings (For a recent review, see
Wardle and Baker, 2020). However, the problem arises because
a large amount of published work has used the exact same
stimulus set. This leads to a wide-spread issue of generalisability.
In addition, the current academic landscape encourages only
publishing positive results (Ioannidis et al., 2014), which could
mean that we are getting a skewed picture of published results
that are specific to the 92-object stimulus set.

OVERFITTING TO ONE NEUROIMAGING
DATASET

Overusing the same stimuli is certainly an issue, but it is arguably
more worrying that so many studies also use the exact same
data (Figure 2). The MEG and fMRI responses to the 92-object
stimulus set were made publicly available (Cichy et al., 2016,
2014). This is a gold standard open science practice, and the
dataset has certainly been useful for the field: since its release,
a large proportion of experimental papers have used this exact
dataset to develop new analyses or models, decide on optimal
analysis pipelines, or assess the similarity of the data to other
modalities. An unavoidable result, however, is that these new and
interesting developments are possibly specific to one particular

dataset (note, some have shown that their conclusions were
supported by multiple datasets). Looking at the same dataset
from many different angles over and over again will lead to
several findings that are dataset specific. In other words, there
is a risk of overfitting to one set of data. Eventually, this will
leave us with a body of literature that does not replicate or
generalise to new data, which is a waste of time, money, and
other resources.

We strongly point out that this commentary is not an
argument against making data public. On the contrary, if data
sharing practices were more common, we may not have had
this problem. The current issue lies in the fact that data reuse
is very common, but there are very few similar open data sets
in this literature. They may exist but are either hard to find,
or in a difficult-to-use format. Open data is incredibly useful to
validate existing analyses and test new ideas and methods without
using immense resources to collect expensive neuroimaging data
(resources that do not exist for many researchers). A good
balance needs to be struck between collecting new data and
reusing existing open data. If resources allow, existing open data
could serve as pilot data for new neuroimaging experiments.
The resulting output would contribute to greater experimental
diversity, yield a new open dataset that can be used in the future
and ultimately allow for better generalisability of conclusions. We
also point out that reusing a dataset for the sake of benchmarking
models is a different endeavour from the uses of the problematic
dataset we highlight here. For comparing model performance,
it is indeed important to use the same dataset as others in the
literature. For example, the imagenet and mnist benchmarks used
in computer vision research. Previous work has used the 92-
object dataset to demonstrate promising new analyses, so it could
be considered a benchmark dataset. However, it is not well-
suited for this purpose, as new analyses might appear too good
to be true considering the limitations of the stimuli. Therefore,
even for benchmarking purposes we urge to not rely (solely) on
the 92-object set.

THE WAY FORWARD

A large number of papers in Computational Cognitive
Neuroscience have used the same dataset and stimulus set,
which raises questions about the generalisability of their
influential and exciting results. This problem is ongoing, with
many of the papers in Figure 2 published in the last 5 years, and
several forthcoming works currently on preprint servers. Yet,
there are promising signs on the horizon.

First, not all work in the field has relied on this problematic
dataset. Many studies have collected new stimuli and data,
re-used different stimuli and datasets, or generalised their
results to multiple datasets. Second, efforts to develop large-
scale, systematically selected stimulus databases are a huge
step forward, such as THINGS (Hebart et al., 2019), or ecoset
(Mehrer et al., 2021). These large sets will hopefully will soon be
accompanied by high-quality open neuroimaging datasets. Third,
data sharing has also become easier through several (free) hosting
platforms (e.g., figshare, osf, openneuro), and it is increasingly
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FIGURE 1 | The 92-object stimulus set used in over 35 computational cognitive neuroscience papers. Some of the objects in the “animate” category are not animate
(e.g., hair; row 1 column 5, or a cut-out wolf figurine; row 3 column 4). Some inanimate images are not objects, but rather scenes (e.g., row 6/7 column 1). This
stimulus set is often used to highlight a strong animate/inanimate dichotomy in human brain responses, but the categories have consistent visual differences (the
rightmost two columns show the means of all images in a category).

FIGURE 2 | A graph representation of research outputs (nodes) that re-used (edges) the same dataset or stimuli from two influential papers (larger nodes).
Importantly, this is not intended to question or refute the findings of any of these studies, but rather to point to a potential issue of generalisability in the literature.
These data were obtained by going through Scopus citation lists, and therefore it is likely that the graph is not complete.

more common to make data available upon publication. Finally,
data formatting standards have been established, such as the brain
imaging data structure (BIDS) (Gorgolewski et al., 2016; Niso
et al., 2018; Holdgraf et al., 2019; Pernet et al., 2019), which makes
it easier to re-use data.

In conclusion, we need to strike a delicate balance between
taking advantage of existing resources and being aware of the
limitations that come with re-using existing data and stimulus
sets. While open data will allow the field to keep exploring new
ideas without spending huge amounts of public funds or devoting

Frontiers in Human Neuroscience | www.frontiersin.org 3 July 2021 | Volume 15 | Article 682661

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-682661 July 2, 2021 Time: 17:45 # 4

Grootswagers and Robinson Overfitting to Stimuli and Data

many hours to operating neuroimaging equipment, we equally
often need to consider collecting new data to test the reliability of
these ideas and improve the body of research as a whole.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

TG created the figures and first draft. TG and AR wrote the
manuscript. Both authors contributed to the article and approved
the submitted version.

FUNDING

AR was supported by ARC DE200101159.

REFERENCES
Bracci, S., and Op de Beeck, H. P. (2016). Dissociations and associations between

shape and category representations in the two visual pathways. J. Neurosci. 36,
432–444. doi: 10.1523/JNEUROSCI.2314-15.2016

Carlson, T. A., Tovar, D. A., Alink, A., and Kriegeskorte, N. (2013).
Representational dynamics of object vision: the first 1000 ms. J. Vis. 13:1.
doi: 10.1167/13.10.1

Cichy, R. M., Pantazis, D., and Oliva, A. (2014). Resolving human object
recognition in space and time. Nat. Neurosci. 17, 455–462. doi: 10.1038/nn.
3635

Cichy, R. M., Pantazis, D., and Oliva, A. (2016). Similarity-Based fusion of
MEG and fMRI reveals spatio-temporal dynamics in human cortex during
visual object recognition. Cereb. Cortex 26, 3563–3579. doi: 10.1093/cercor/
bhw135

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff,
E. P., et al. (2016). The brain imaging data structure, a format for organizing
and describing outputs of neuroimaging experiments. Sci. Data 3:160044. doi:
10.1038/sdata.2016.44

Grootswagers, T., Cichy, R. M., and Carlson, T. A. (2018). Finding decodable
information that can be read out in behaviour. NeuroImage 179, 252–262.
doi: 10.1016/j.neuroimage.2018.06.022

Grootswagers, T., Robinson, A. K., Shatek, S. M., and Carlson, T. A. (2019).
Untangling featural and conceptual object representations. NeuroImage
202:116083. doi: 10.1016/j.neuroimage.2019.116083

Hebart, M. N., Dickter, A. H., Kidder, A., Kwok, W. Y., Corriveau, A., Wicklin,
C. V., et al. (2019). THINGS: a database of 1,854 object concepts and more than
26,000 naturalistic object images. PLoS One 14:e0223792. doi: 10.1371/journal.
pone.0223792

Holdgraf, C., Appelhoff, S., Bickel, S., Bouchard, K., D’Ambrosio, S., David, O., et al.
(2019). iEEG-BIDS, extending the Brain Imaging Data Structure specification
to human intracranial electrophysiology. Sci. Data 6:102. doi: 10.1038/s41597-
019-0105-7

Ioannidis, J. P. A., Munafò, M. R., Fusar-Poli, P., Nosek, B. A., and David, S. P.
(2014). Publication and other reporting biases in cognitive sciences: detection,
prevalence, and prevention. Trends Cogn. Sci. 18, 235–241. doi: 10.1016/j.tics.
2014.02.010

Kaneshiro, B., Guimaraes, M. P., Kim, H.-S., Norcia, A. M., and Suppes, P. (2015).
A representational similarity analysis of the dynamics of object processing using
single-Trial EEG classification. PLoS One 10:e0135697. doi: 10.1371/journal.
pone.0135697

Kiani, R., Esteky, H., Mirpour, K., and Tanaka, K. (2007). Object category
structure in response patterns of neuronal population in monkey inferior
temporal cortex. J. Neurophysiol. 97, 4296–4309. doi: 10.1152/jn.00024.
2007

Kriegeskorte, N., and Kievit, R. A. (2013). Representational geometry: integrating
cognition, computation, and the brain. Trends Cogn. Sci. 17, 401–412. doi:
10.1016/j.tics.2013.06.007

Kriegeskorte, N., Mur, M., and Bandettini, P. A. (2008a). Representational
similarity analysis - connecting the branches of systems neuroscience. Front.
Syst. Neurosci. 2:4. doi: 10.3389/neuro.06.004.2008

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., et al.
(2008b). Matching categorical object representations in inferior temporal cortex
of man and monkey. Neuron 60, 1126–1141. doi: 10.1016/j.neuron.2008.
10.043

Long, B., Yu, C.-P., and Konkle, T. (2018). Mid-level visual features underlie the
high-level categorical organization of the ventral stream. Proc. Natl. Acad. Sci.
U.S.A. 115, E9015–E9024. doi: 10.1073/pnas.1719616115

Mehrer, J., Spoerer, C. J., Jones, E. C., Kriegeskorte, N., and Kietzmann, T. C.
(2021). An ecologically motivated image dataset for deep learning yields better
models of human vision. Proc. Natl. Acad. Sci. U.S.A. 118:e2011417118. doi:
10.1073/pnas.2011417118

Niso, G., Gorgolewski, K. J., Bock, E., Brooks, T. L., Flandin, G., Gramfort,
A., et al. (2018). MEG-BIDS, the brain imaging data structure extended
to magnetoencephalography. Sci. Data 5:180110. doi: 10.1038/sdata.20
18.110

Pernet, C. R., Appelhoff, S., Gorgolewski, K. J., Flandin, G., Phillips, C., Delorme,
A., et al. (2019). EEG-BIDS, an extension to the brain imaging data structure for
electroencephalography. Sci. Data 6:103. doi: 10.1038/s41597-019-0104-8

Proklova, D., Kaiser, D., and Peelen, M. V. (2016). Disentangling representations of
object shape and object category in human visual cortex: the animate–inanimate
distinction. J. Cogn. Neurosci. 28, 680–692. doi: 10.1162/jocn_a_00924

Proklova, D., Kaiser, D., and Peelen, M. V. (2019). MEG sensor patterns reflect
perceptual but not categorical similarity of animate and inanimate objects.
NeuroImage 193, 167–177. doi: 10.1016/j.neuroimage.2019.03.028

Rice, G. E., Watson, D. M., Hartley, T., and Andrews, T. J. (2014). Low-Level image
properties of visual objects predict patterns of neural response across category-
selective regions of the ventral visual pathway. J. Neurosci. 34, 8837–8844.
doi: 10.1523/JNEUROSCI.5265-13.2014

Vanrullen, R. (2011). Four common conceptual fallacies in mapping the
time course of recognition. Percept. Sci. 2:365. doi: 10.3389/fpsyg.2011.
00365

Wardle, S. G., and Baker, C. (2020). Recent advances in understanding object
recognition in the human brain: deep neural networks, temporal dynamics, and
context. F1000Res. 9:590. doi: 10.12688/f1000research.22296.1

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Grootswagers and Robinson. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 4 July 2021 | Volume 15 | Article 682661

https://doi.org/10.1523/JNEUROSCI.2314-15.2016
https://doi.org/10.1167/13.10.1
https://doi.org/10.1038/nn.3635
https://doi.org/10.1038/nn.3635
https://doi.org/10.1093/cercor/bhw135
https://doi.org/10.1093/cercor/bhw135
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1016/j.neuroimage.2018.06.022
https://doi.org/10.1016/j.neuroimage.2019.116083
https://doi.org/10.1371/journal.pone.0223792
https://doi.org/10.1371/journal.pone.0223792
https://doi.org/10.1038/s41597-019-0105-7
https://doi.org/10.1038/s41597-019-0105-7
https://doi.org/10.1016/j.tics.2014.02.010
https://doi.org/10.1016/j.tics.2014.02.010
https://doi.org/10.1371/journal.pone.0135697
https://doi.org/10.1371/journal.pone.0135697
https://doi.org/10.1152/jn.00024.2007
https://doi.org/10.1152/jn.00024.2007
https://doi.org/10.1016/j.tics.2013.06.007
https://doi.org/10.1016/j.tics.2013.06.007
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.1016/j.neuron.2008.10.043
https://doi.org/10.1016/j.neuron.2008.10.043
https://doi.org/10.1073/pnas.1719616115
https://doi.org/10.1073/pnas.2011417118
https://doi.org/10.1073/pnas.2011417118
https://doi.org/10.1038/sdata.2018.110
https://doi.org/10.1038/sdata.2018.110
https://doi.org/10.1038/s41597-019-0104-8
https://doi.org/10.1162/jocn_a_00924
https://doi.org/10.1016/j.neuroimage.2019.03.028
https://doi.org/10.1523/JNEUROSCI.5265-13.2014
https://doi.org/10.3389/fpsyg.2011.00365
https://doi.org/10.3389/fpsyg.2011.00365
https://doi.org/10.12688/f1000research.22296.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

	Overfitting the Literature to One Set of Stimuli and Data
	Background
	A Problematic Stimulus Set
	Overfitting to One Neuroimaging Dataset
	The Way Forward
	Data Availability Statement
	Author Contributions
	Funding
	References


