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A B S T R A C T

How is emotion represented in the brain: is it categorical or along dimensions? In the present study, we applied
multivariate pattern analysis (MVPA) to magnetoencephalography (MEG) to study the brain's temporally un-
folding representations of different emotion constructs. First, participants rated 525 images on the dimensions of
valence and arousal and by intensity of discrete emotion categories (happiness, sadness, fear, disgust, and
sadness). Thirteen new participants then viewed subsets of these images within an MEG scanner. We used
Representational Similarity Analysis (RSA) to compare behavioral ratings to the unfolding neural representation
of the stimuli in the brain. Ratings of valence and arousal explained significant proportions of the MEG data,
even after corrections for low-level image properties. Additionally, behavioral ratings of the discrete emotions
fear, disgust, and happiness significantly predicted early neural representations, whereas rating models of anger
and sadness did not. Different emotion constructs also showed unique temporal signatures. Fear and disgust –
both highly arousing and negative – were rapidly discriminated by the brain, but disgust was represented for an
extended period of time relative to fear. Overall, our findings suggest that 1) dimensions of valence and arousal
are quickly represented by the brain, as are some discrete emotions, and 2) different emotion constructs exhibit
unique temporal dynamics. We discuss implications of these findings for theoretical understanding of emotion
and for the interplay of discrete and dimensional aspects of emotional experience.

1. Introduction

Emotions are a potent part of our daily lives; the way in which we
characterize and experience them is the focus of contentious and on-
going debate (see Russell, 2009). Modern neuroimaging and statistical
techniques allow for new ways to examine how emotions are delineated
in the brain and the indices provided by such techniques might shed
light on the most appropriate ways to define or understand them (see
Hamann, 2012; Kragel and LaBar, 2016 for reviews).

Two traditional, polar perspectives in the field suggest that emo-
tions exist either as discrete entities or along dimensional space. The
discrete emotion perspective suggests that a number of nominal, basic,
specific emotions exist in categorical space (Ekman, 1992; Izard, 1992).
In its most strict interpretation, the basic emotion perspective suggests
that innate emotions comprise the emotional space as separate entities
with unique and distinct physiological correlates: e.g., fear, sadness,
anger, surprise, joy, contempt, disgust (Ekman, 1992). In contrast, the
traditional dimensional perspective suggests that emotions exist along
graded dimensions, such as valence (positive vs. negative) and arousal

(activated vs. deactivated), and that the spectrum of emotional ex-
perience can be characterized by where they fall along these dimen-
sions (Bradley and Lang, 1994; Rubin and Talarico, 2009; Russell,
1980). For example, in this framework, sadness exists within the
quadrant of dimensional space where negative valence and low arousal
intersect, whereas fear and disgust can be characterized by the inter-
section of negative valence with high arousal. More modern versions of
the dimensional approach have included additional dimensions, such as
approach- vs. withdrawal- related value (e.g., Harmon-Jones et al.,
2013), or potency and unpredictability (Fontaine et al., 2007). Both
perspectives have been supported through decades of research (Russell,
2009), resulting in little consensus about the underlying organizational
structure of emotional constructs (Hamann, 2012).

Modern alternatives to these traditional theories of emotion include
constructivist, network-based approaches (Barrett, 2017; Cunningham
et al., 2014; Lindquist et al., 2013). For example, Barrett's “theory of
constructed emotion” suggests that emotions are experienced and
learned based on previous, similar experiences, and derived from a
network-based representation (Barrett, 2009, 2017). In this framework,
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seemingly discrete emotions are experienced by applying conceptual
knowledge (often derived from previous experience and prediction
processes) to interoceptive sensations that can often be characterized in
terms of (but not limited to) valence and arousal dimensions (Barrett,
2017). Previous iterations of this model referred to the dimensional
underpinnings as “core affect” (Russell and Barrett, 1999). Although
constructivist accounts might be interpreted as the antithesis of a dis-
crete emotions perspective, in some ways they also serve as a vehicle to
reconcile discrete emotion- and dimensional- views. We might predict,
for example, that individual ratings of valence and arousal (to the de-
gree that such ratings have face value) account for a large degree of
variance in the brain's response to emotional stimuli, and that such
dimensions should predict variance early in the temporal unfolding of
such neural representations. We might also expect ratings of discrete
emotions to account for some variance, but with the substance of their
predictive value observed later in time.

Note that such a formulation raises additional questions: are there
reliable differences in the rate at which representations of different
discrete emotions are constructed? And, if it is correct that much of
emotional experience is built on a foundation that includes dimensions
of valence and arousal, is this necessarily true for all discretely ex-
perienced emotions? In the case of fear, for example, one influential
suggestion has been that the amygdala (heavily implicated in fear)
connects with other brain regions both via a cortical route and via
routes that rapidly bypass cortical regions involved in attention and
awareness (e.g., LeDoux, 2000; Morris et al., 1999; Tamietto and de
Gelder, 2010). Although this suggestion has been challenged in recent
years (Pessoa and Adolphs, 2010), the notion highlights the possibility
that the neural representation of fear may unfold more rapidly than that
of other emotions, perhaps so rapidly as not to be preceded by neural
signatures of valence and arousal.

Multivariate pattern analysis (MVPA) or “brain decoding” techni-
ques can be used to identify patterns of activation that are associated
with particular mental states (Carlson et al., 2003; Cox and Savoy,
2003; Haxby et al., 2001; Haynes, 2015; Kamitani and Tong, 2005;
Kriegeskorte et al., 2006). This approach targets informational content
in patterns of activity across multiple variables, rather than differences
in activity in single variables (Kriegeskorte et al., 2006). MVPA is thus a
useful tool in the understanding of emotional space – particularly as
modern emotion theories suggest emotions to exist in representational
space within network-based frameworks, rather than based on iso-
metric, one-to-one relationships between areas of the brain and in-
dividual emotions (Hamann, 2012). The Representational Similarity
Analysis (RSA) approach (Kriegeskorte and Kievit, 2013; Kriegeskorte
et al., 2008a) extends the MVPA “brain decoding” approach by mod-
eling the representational content of information in brain activity pat-
terns. RSA allows comparisons of the structure of information in brain
activity patterns to theoretical models of cognition (Kriegeskorte et al.,
2008a).

In the context of defining the representational space of emotion
constructs, several recent studies have applied MVPA to examine spatial
regions of the brain associated with specific emotions – typically using
functional magnetic resonance imaging (fMRI) or positron emission
tomography (PET) techniques with high spatial resolution (but usually
low temporal resolution). In a review of recent literature, Kragel and
LaBar (2016) suggest that MVPA is able to predict neural activity by
both emotional dimensions of valence and arousal and discrete emo-
tions. Evidence for this comes from recent decoding studies which
suggest that both emotional dimensions and distinguished emotion
categories can be observed using MVPA (e.g., Kragel and Labar, 2013;
Kragel and LaBar, 2014; Saarimäki et al., 2016).

Far fewer neuroimaging studies have examined temporal signatures
of emotional constructs as a way to determine how different emotions
are classified. This is despite the useful information that temporal sig-
natures can provide in understanding the categorization of emotions –
particularly as a way to possibly separate brain processes involved in

representing multiple emotional constructs (see Waugh et al., 2015).
Researchers who have examined temporal signatures suggest that dif-
ferent, discrete emotions elicit unique temporal neural signatures
(Costa et al., 2014; Eger et al., 2003; Esslen et al., 2004). For example,
in an event-related potential (ERP) study (Costa et al., 2014), partici-
pants passively viewed a subset of images from the International Af-
fective Picture System (IAPS; Lang et al., 2008). Afterward, participants
categorized the images into four emotional categories (fear, disgust,
happiness, or sadness) and rated the images on the dimensions of va-
lence and arousal on a 9-point scale. Costa and colleagues found that
emotion-specific time signatures differentiated between discrete emo-
tions, with the unique time signature of fear occurring fastest, followed
by disgust, then happiness, then sadness. Thus, MVPA reveals that
temporal dynamics also differentiate between discrete emotion cate-
gories (Costa et al., 2014).

Previous studies examining temporal signatures of emotion con-
structs have mostly used stimuli predefined based on discrete emotional
categories (e.g., face stimuli exhibiting particular discrete expressions,
Eger et al., 2003; Esslen et al., 2004; images in predetermined cate-
gorized and analyzed as separate discrete emotions, Costa et al., 2014).
However, as expressed in several emotion theories, it may not always be
so easy to isolate a given emotion in any given stimulus. Some dis-
gusting images, for example, can also induce fear. Some pleasant
images elicit more happiness than others. And if dimensional properties
determine later emotional categorization, the timeline of such dimen-
sional properties should be tracked separately from the discrete emo-
tional properties. Rather than separating images into a priori, cate-
gories, we used scaled emotional ratings to define all images with
emotional categorical weights along all emotional constructs of interest.
By doing so, we could better ensure that differences in neural signature
were due to differences in emotional ratings per se, rather than re-
flecting predetermined categories of discrete emotions.

We sought to understand how the brain quickly characterizes
emotional constructs in representational space. We applied RSA to high
temporal resolution magneto-encephalography (MEG) data to examine
time varying neural activity. Compared to EEG, MEG signal is less
smeared over sensors and is less distorted by ocular or muscular arte-
facts (Baillet, 2017), and it therefore requires fewer trials per condition
which is perfectly suited for a condition-rich approach such as RSA
(Grootswagers et al., 2017; Kriegeskorte et al., 2008a). We measured
evoked responses with MEG while participants viewed images and en-
gaged in a one-back task. We employed a one-back task in order to
encourage participants to attend to the visual properties of the image
rather than the emotional construct per se. The images represented
scenes of varying emotional content, and were each previously rated on
the constructs of valence, arousal, anger, sadness, disgust, fear, and
happiness. Using RSA, we examined how reliably image ratings re-
presented neural patterns across emotional constructs, as a way to
better determine how the brain represents them.

2. Methods

The current study consisted of two parts. In the first part, we ob-
tained behavioral ratings of emotional responses to our stimulus set.
The second part involved presenting the images to a new group of
participants while their brain responses were recorded using magneto-
encephalography (MEG). The MEG recordings were then analyzed
using representational similarity analysis framework (RSA;
Kriegeskorte, 2011; Kriegeskorte and Kievit, 2013), where we assessed
how much information in the MEG recordings of participants’ brain
activity could be explained by the behavioral ratings of emotional re-
sponses.

2.1. Stimuli

Stimuli consisted of 525 visual images. Some images were chosen
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from the International Affective Picture System (IAPS; Lang et al.,
2008), some images were chosen from the Nencki Affective Picture
System (NAPS; Marchewka et al., 2014), and all other images were
chosen from publicly available internet sources. Images were colored,
depicted natural scenes, and were chosen to represent different emo-
tional categories: fear (e.g., threatening animals, gunmen, attackers),
sadness (e.g., individuals crying, malnourished children, scenes of in-
justice), erotica, extreme sports, disgust (e.g., medical injuries, rotten
food, roadkill), pleasantness (e.g., laughing babies, fuzzy baby ani-
mals), and neutral images (e.g., portraits with neutral expressions, in-
dividuals playing chess). These categories were only used as a way to
ensure a variety of different emotional images – participant ratings
were used to determine the emotionality of individual images.

2.2. Behavioral ratings

399 participants were recruited on Amazons Mechanical Turk for a
~30-min task.2 Age and sex of participants were not recorded, but
Mechanical Turk participants have been found to be representative of
the general US population (Berinsky et al., 2012). The ratings task was
programmed and run on Qualtrics, and participants were randomly
assigned to one of eleven picture set conditions. Picture sets contained
either 49 or 42 images, and each set contained an equal amount of
exemplars (6 or 7) for the categories of fear, sadness, erotica, extreme
sports, disgust, pleasantness, and neutral images. An individual picture
set always contained the same images, but the images were presented in
a different, random order for every participant in that condition. Across
all sets, all 525 images were rated. For each image, participants gave
their response on a scale of 1–9 for the following seven questions:

1. How HAPPY/UNHAPPY does this picture make you feel (on a scale
from / 1-very unhappy, to 9-very happy)? (Valence)

2. How CALM/EXCITED does this picture make you feel (on a scale
from / 1-not at all arousing to 9-very arousing)? (Arousal)

3. How much does this image make you feel Anger (on a scale from 1-
not at / all to 9-very much)?

4. How much does this image make you feel Sadness (on a scale from
1-not at / all to 9-very much)?

5. How much does this image make you feel Fear (on a scale from 1-not
at / all to 9-very much)?

6. How much does this image make you feel Disgust (on a scale from 1-
not at / all to 9-very much)?

7. How much does this image make you feel Happiness (on a scale
from 1-not at / all to 9-very much)?

At the end of the task, participants were debriefed about the pur-
pose of the ratings task, and were compensated $1.50 through MTurk.
Participants gave informed consent through instructions at the begin-
ning of the study, and the experiment was approved by the UNSW
Sydney Human Research Ethics Approval Panel. Mean responses for
each question of every image were computed over participants, and
used as inputs for RSA. These means are available for download at OSF:
https://osf.io/5zqfa/.

2.3. MEG data acquisition

13 healthy volunteers (9 female, mean age = 24.7 years (SD = 4
years), all right handed, with normal or corrected-to-normal vision)
participated in the MEG part of the study. All participants were re-
cruited from the Macquarie University Student Participant pool, and
gave written consent prior to the study. Participants were financially

compensated for their time. The study was conducted with the approval
of the Macquarie University Human Research Ethics Committee.

For each participant, we used a unique combination of 99 stimuli, of
which 49 were seen by all participants. The set of stimuli seen by all
participants was included to quantify the between subject variance in
the responses, by computing the noise ceiling (described below). The
sets of unique stimuli were selected to cover stimuli from all stimulus
categories (e.g., happy, sad, neutral, etc.) and to have approximately
similar behavioral rating distributions. A table with individual partici-
pant image set rating means, and a scatterplot of stimuli-wise intensity
values of emotional constructs related to every other emotional con-
struct, are available on OSF: https://osf.io/5zqfa/. Before starting the
MEG session, to familiarize the participant with the stimuli, they were
shown their individual subset of stimuli while rating them on valence,
using a 1–9 key response to the question “how happy does this picture
make you feel?”. This gave participants an opportunity to look at each
image for a lengthy amount of time and identify their emotional con-
tent, to allow participants to better identify each image in the scanner
and know their emotional content while doing a visually-based task.
Next, participants lay supine inside a magnetically shielded room
(Fujihara Co. Ltd., Tokyo, Japan) while the MEG signal was sampled at
1000 Hz from 160 axial gradiometers (Model PQ1160R-N2, KIT,
Kanazawa, Japan). Recordings were filtered online between 0.03 Hz
and 200 Hz. Stimuli were presented in random order for 200 ms each,
with an inter-stimulus interval that varied randomly between 850 and
950 ms. Each stimulus was presented 32 times throughout the experi-
ment. Participants were instructed to press a button when a stimulus
repeated during the inter-stimulus interval. The repeating stimuli were
counterbalanced throughout the experiment. The relatively long tem-
poral distance between images allowed participants to respond to re-
peated images, and also prevented possible emotion-induced blindness
– such that with this delay, emotional images would likely not interfere
with the processing of subsequent images (Most et al., 2005). Using the
Yokogawa MEG Reader Toolbox for MATLAB (Yokogawa Electric Cor-
poration, 2011), we extracted −100 to 600 ms of MEG data relative to
the onset of the stimulus in each trial. Next, the data were down-
sampled to 200 Hz, and four trials of each stimulus were averaged to
create 8 pseudotrials per stimulus (Grootswagers et al., 2017; Isik et al.,
2014). Note that no other preprocessing steps were performed on the
data (e.g., no channel selection, baseline correction, artefact removal,
etc.).

2.4. Representational similarity analysis

The data were analyzed using RSA (Kriegeskorte, 2011;
Kriegeskorte et al., 2008b; Kriegeskorte and Kievit, 2013). This ap-
proach works by first creating representational dissimilarity matrices
(RDMs) for each subject that describe the difference in the neural re-
sponse between pairs of stimuli from the recorded brain activity (de-
scribed below). These neural RDMs can then be compared to ‘candidate’
RDMs, such as behavioral rating RDMs (Redcay and Carlson, 2015;
Wardle et al., 2016), or can be compared to other modalities (Cichy
et al., 2014) and other species (Kriegeskorte et al., 2008b).

We constructed time-varying RDMs for each subject. A 25 ms sliding
window approach was used where at each time point (Fig. 1A), we
included data from the four preceding time points (to avoid artificially
moving the onset of information in the data). The channel activations at
these five time points were concatenated into a feature vector for each
trial. A linear discriminant t-value (LD-t) between the feature vectors of
the trials belonging to two stimuli was computed and stored in a NxN
matrix (Fig. 1B), where N is the number of stimuli. The LD-t is a cross-
validated measure of dissimilarity, similar to a cross-validated Maha-
lanobis distance (Nili et al., 2014; Walther et al., 2015). LD-t values for
all possible pairwise combinations of subject-specific stimuli were
computed, yielding an NxN representational dissimilarity matrix (RDM,
Fig. 1C). Repeating the process at each time point resulted in a set of

2 Most but not all participants completed the entire ratings task (302 out of 399 par-
ticipants completed the whole task). To compute average emotion scores for each image,
we included ratings regardless of the number of trials participants completed.
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time-varying RDMs for each subject (Fig. 1D).
Candidate model RDMs were created using the behavioral rating

data (e.g., Fig. 1E). For each of the rating questions, an RDM was
constructed by taking the difference in the mean ratings for all pairs of
stimuli. This resulted in seven behavioral rating RDMs. In addition,
HMAX (Riesenhuber and Poggio, 2002; Serre et al., 2005) was used as a
control model to approximate the visual responses to the images. The
first two layers (S1 and C1) of HMAX represent V1 simple and complex
cells. The higher layers (S2 and C2) represent complex and invariant
features that pool from the lower two layers, in a similar manner to the
ventral temporal cortex. The responses to our stimuli of the units in
each layer were concatenated into vectors. We then computed pairwise
dissimilarities on these vectors to create four RDMs (one per HMAX
layer). To assess the overlap of information amongst our candidate
RDMs, we computed similarity values (Spearman's rho) for all pairwise

combinations of the RDMs. These were then visualized using multi-
dimensional scaling, which represents the multidimensional RDMs as
points in a lower dimensional 2D space, and arranging them so that
distance between points approximate the similarity between exemplars
in the RDMs.

The 11 candidate model RDMs (4 HMAX RDMs and 7 behavioral
RDMs) were compared against the time-varying neural RDMs by com-
puting the correlation (Spearman's rho) between the candidate model
RDMs (Fig. 1E) and the neural RDMs at each time point (Fig. 1D),
yielding a time-varying correlation for each candidate RDM for each
subject (Fig. 1F). For each subject, the candidate models were restricted
to the 99 stimuli in that subject's stimulus set (see Fig. 1C, D). The
correlations for the behavioral rating models were computed using
partial correlations, to control for the correlations with the HMAX C2
RDM (which had the highest correlation with the neural data). In

Fig. 1. Methods overview A. A 25 ms sliding window approach was used. At one time window (highlighted area), MEG responses to two stimuli were extracted. B. A dissimilarity value
between MEG responses was computed and stored in an NxN matrix. C. Repeating the process over all stimuli yielded a subject-specific representational dissimilarity matrix (RDM). Note
that each subject saw a subset of the stimuli, resulting in only a partially filled RDM. D. A time-varying RDM was created for each subject by repeating the process over all time points. E.
One example candidate model RDM. Multiple candidate models were constructed from the behavioral ratings and HMAX model. F. For each subject, their time-varying RDM was
correlated to the candidate model (restricted to their respective stimulus subset) resulting in a time-varying correlation with the candidate model. The time-varying correlations were
assessed for significance at the group level.
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addition, we used partial correlations for assessing to what extent the
correlations with the discrete rating models could be explained by the
valence and arousal models. Wilcoxon signed rank tests (with subject as
random effect) were then used at each time point for statistical in-
ference on the correlations at the group level. False Discovery Rate
(FDR) was used to correct for multiple comparisons by determining the
FDR-threshold (q = 0.05) and subsequently using this to threshold the
p-values.

To estimate the range of correlations to be expected given the be-
tween-subject variance, we computed the noise ceilings for our data (as
described in Nili et al. (2014)). The noise ceiling was computed using
only the stimuli that were shared across participants. This means that
the true noise ceiling is likely to be lower that our estimate, as including
more stimuli (with fewer participants per stimulus) will increase the
noise in the data.

3. Results

The aim of this study was to study the brain's time varying re-
presentation of different emotional constructs. We used RSA to compare
the brain's time varying representation of the stimuli to candidate
models that were created using behavioral ratings on emotional di-
mensions and intensity of discrete emotions. HMAX was used to create
control models of low-level image properties.

To assess the similarities amongst the candidate RDMs, we corre-
lated the pairwise combinations of the RDMs (Fig. 2A), and visualized
the relations between the RDMs using multidimensional scaling
(Fig. 2B). These results show that HMAX RDMs cluster together, with
the exception of layer C2, which is different from the other layers. The
behavioral rating RDMs are different from the HMAX RDMs. Fear and
arousal are the most different from the other rating RDMs. We

computed the noise ceiling for the MEG RDMs based on the stimuli that
were seen by all subjects (Fig. 2C). The noise ceiling estimates the range
of the maximum possible correlation between the data and any model,
given the between-subject variance in the data. For comparison, the
correlation between candidate models and the MEG data are displayed
with the noise ceiling. The HMAX RDM correlations (blue lines) in the
early response reach about 25% of the noise ceiling, and the candidate
models (red and yellow lines) in the later response are approximately
half as strong as the lower bound on the noise ceiling. Note that the
noise ceiling is an estimate of the correlation of the “true model”. The
emotional dynamics are likely to be covered using a combination of
several candidate models. Therefore, the correlations of the individual
models are not expected reach the noise ceiling.

The time-varying neural RDMs were correlated at each time point
with the HMAX RDMs that capture low level visual responses to the
images. The correlations for the earliest HMAX layers become sig-
nificant around 70 ms, which roughly corresponds to visual information
entering the striate cortex (Thorpe et al., 1996). The correlations with
the most complex HMAX layer (C2), which emulates processing areas
further along the ventral stream, reach significance later (100 ms), and
peaks later (165 ms) compared to the early layers. The C2 layer cor-
relations were significant for the longest time period. The time-varying
correlations are shown in Fig. 3, where for each HMAX layer, the
complete RDM is depicted in the left column. The right column shows
their respective time-varying correlations with the neural data. In sum,
these results show that the early MEG response to the stimuli is ex-
plained well by low-level visual information.

Next, we correlated the behavioral rating RDMs with the time-
varying neural RDMs, while controlling for the information that is
captured by the best performing visual control model, the HMAX C2
RDM (using a partial correlation). We found that valence and arousal

Fig. 2. Similarity between candidate RDMs. A. Correlation
between candidate RDMs. To assess overlap of information be-
tween the RDMs, the candidate RDMs were correlated with each
other. Higher values mean the RDMs are similar. B. Visualization
of the similarities between candidate RDMs. Points represent
RDMs and distances between these points represents the dissim-
ilarities (1-correlation) between the RDMs. This shows that HMAX
RDMs cluster together and are different from the behavioral
rating RDMs. C. RDM correlations with the MEG time-series RDM
compared to noise ceiling estimates. The noise ceiling estimates
the range of the maximum correlation that the true model can
have with the data, given the between-subject variance. The
emotional dynamics are likely to be covered using a multifaceted
model. Therefore, the correlations of the individual candidate
models are not expected reach the noise ceiling.
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are significantly represented in the neural data starting at 145 ms and
175 ms and peaking at 285 ms and 300 ms. Fig. 4 shows these corre-
lations, with the rating RDMs in the left column, and their respective
correlation with the neural data in the right column. Discrete emotion
categories were represented early as well (Fig. 5). Correlations with
anger ratings started relatively late (300 ms) in the time series
(Fig. 5A). The correlations for sadness did not reach significance, but
were consistently above zero from after around 240 ms onward
(Fig. 5B). The onset for fear was the earliest of all, starting at 140 ms,
and had an early (175 ms) peak (Fig. 5C). Disgust showed the largest
and most sustained significant correlation over time, starting at 170 ms
and peaking at 285 ms (Fig. 5D). Happiness showed a lower, but fast
(145 ms) and sustained significant correlation over time (Fig. 5E).

We then asked whether the correlations of the discrete emotion
categories explain different aspects of the representation than the cor-
relations for valence and arousal. We correlated the discrete emotion

rating models while controlling for the effects of HMAX, valence, and
arousal. The fear and disgust rating models still correlated significantly
with the data (Fig. 6), and thus explain variance that is not captured by
the valence and arousal models. However, correlations with all other
rating models were not significant after correcting for valence and
arousal.

4. Discussion

We examined early neural signatures associated with different
emotional constructs, as a way to explore how the brain characterizes
the representational space of emotion. To model the early neural cor-
relates of emotional constructs, participants viewed behaviorally rated
images inside a MEG scanner, and we applied RSA to examine the time
course of representation along emotional dimensions of valence and
arousal, and along discrete emotional categories of sadness, fear,

Fig. 3. Performance of the low level visual models over time
(HMAX layers). The rank-transformed RDMs are shown on the
left, and their respective correlations with the time-varying neural
RDMs are shown on the right. Marks above the x-axis show sig-
nificant above-zero correlations (p<0.05 fdr-corrected). Shaded
areas represent standard error over participants. Peak correlation
and the onset of a sustained significant correlation are annotated
in each trace.
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disgust, sadness, and happiness. Our data suggest that both arousal and
valence were represented relatively early in the brain. This was despite
the range of image types that we had in our study of varying arousal
and valence levels. The discrete emotions of fear, disgust, and happiness
also had reliable, early signatures, anger was reliably represented at a
later processing stage, and sadness was not reliably represented during
our measurement window. Moreover, despite early representations in
both disgust and fear (both classified as negatively valenced and highly
arousing emotions), the neural signature of disgust lasted for a longer
amount of time than that to fear. Disgust also had a distinct signature,
such that its temporal signature showed a higher correlation than most
other emotion properties at its maximum peak. While speculative, this
result may suggest that disgust in particular elicits a strong response,
and that there may be more similarity in people's disgust response than
their response to other emotional categories.

In the context of traditional emotion classification theories – which
suggest emotional space exists either along dimensions (e.g., Russell,
1980) or discrete emotional constructs with distinct qualities (e.g.,
Ekman, 1992) – these data suggest differences in neural temporal re-
presentational signature across at least some discrete emotion con-
structs in addition to the basic dimensional qualities of valence and
arousal. Thus, in early neural processing, emotions are differentiable by
RSA. In particular, distinct fear and disgust representations were ob-
served when correcting for valence and arousal ratings, suggesting that
these discrete emotions can be observed above and beyond valence and
arousal.

In the framework of constructivist theories of emotion (Barrett,
2017; Cunningham et al., 2014; Lindquist et al., 2013), our finding that
valence and arousal dimensions predict early temporal patterns of ac-
tivation supports the notion that dimensional affect plays a role in how
we assign emotional meaning. Additionally, the different time courses
linked with discrete emotion categories may be suggestive of the re-
lative rapidity with which we may categorize and construct our ex-
perience of different discrete emotions. Constructivist theories suggest
that “core affect” (based on dimensional constructs like valence and
arousal) is the basis with which we extract the experience of discrete
emotions (Barrett, 2017). Mostly consistent with this account, the
predictiveness of valence and arousal had rapid onset, with ratings of
discrete emotions occurring later – with one exception. Ratings of fear

had predictive value as early than ratings of valence and arousal. It may
be that fear (due to its biological importance) is fast-tracked in pro-
cessing unlike other dimensional emotions (e.g., LeDoux, 2000; Morris
et al., 1999; Tamietto and de Gelder, 2010). Moreover, representations
of fear and disgust were observed when we corrected for valence and
arousal correlations, to suggest that these emotions in particular may
recruit from different processes. Altogether, these results suggest dis-
tinct neural temporal signatures of different emotion categories, and
while speculative, may represent the constructive nature of emotional
experience. Future work can examine the different processes for fear
and disgust more directly, by using image sets with varying levels of
fear and disgust, while matching their distributions of valence and
arousal.

To our knowledge, only one other study used MVPA on temporal
neural signatures in response to natural scene images of different
emotional constructs (Costa et al., 2014). Costa et al. (2014) reported
different time signatures for fear and disgust, but found that the onsets
of neural responses distinguished them, whereas we found similar on-
sets but prolonged representation for disgust. Additionally, while Costa
et al. reported a slow onset time for happiness and sadness, we found a
relatively fast response to happiness, and no significant unique response
to sadness at all. The differences in results could be due to the nature of
task-demands – participants in our study were actively engaged in a
one-back task, whereas participants in Costa et al.’s task were passively
viewing the images. Differences could also stem from the way in which
emotional stimuli were categorized – Costa et al. defined images into
discrete categories, whereas we used scaled ratings to define their ca-
tegorical weights. Altogether, we similarly conclude that at least some
discrete emotions demonstrate unique neural signatures, and that va-
lence and arousal cannot fully explain differences between emotional
responses (particularly in fear and disgust). The use of emotional
images is common practice in emotion research. Large datasets with
hundreds of previously rated images (e.g., IAPS, Lang et al., 2008;
NAPS, Marchewka et al., 2014) are commonly used to elicit emotional
responses in many varied and diverse emotional paradigms. The time
signatures of different emotional constructs should be considered in
these tasks and the interpretation of results. For example, images de-
picting anger may take a greater amount of time to be represented
compared to fear images. The intensity of emotions to those images may

Fig. 4. Performance of the valence and arousal rating scale
models over time after correcting for HMAX correlations. The
rank-transformed RDMs are shown on the left, and their re-
spective correlations with the time-varying neural RDMs are
shown on the right. Correlations were computed using partial
correlations to control for the correlations with the HMAX C2
model. Marks above the x-axis show significant above-zero cor-
relations (p< 0.05 fdr-corrected). Shaded areas represent stan-
dard error over participants. Peak correlation and the onset of a
sustained significant correlation are annotated in each trace.
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therefore vary depending on when the response is measured.
The type of emotional processing elicited by emotional images

should also be considered. In this study, participants viewed images
that were themselves emotional, rather than participants inducing

emotions organically through imagery, narratives, etc. It is therefore
worth noting that emotional constructs in our study were based on the
categorical ratings of emotional stimuli rather than the subjective ex-
perience of emotion per se. We also only used the dimensions of valence

Fig. 5. Performance of the discrete emotion rating scale
models over time after correcting for HMAX correlations. The
rank-transformed RDMs are shown on the left, and their re-
spective correlations with the time-varying neural RDMs are
shown on the right. Correlations were computed using partial
correlations to control for the correlations with the HMAX C2
model. Marks above the x-axis show significant above-zero cor-
relations (p< 0.05 fdr-corrected). Shaded areas represent stan-
dard error over participants. Peak correlation and the onset of a
sustained significant correlation are annotated in each trace.
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and arousal to represent the traditional dimensional space of emotions,
whereas future work may want to incorporate additional dimensions to
represent the space with higher dimensionality (see Fontaine et al.,
2007). Moreover, previous research indicates specific, modality-de-
pendent activation to represent valence across the modalities of vision
and taste (in ventral temporal cortex and anterior insular cortex), as
well as modality-independent activation to represent valence (in the
lateral orbitofrontal cortices; OFC) (Chikazoe et al., 2014). These results
indicate there may be modality-specific lower-level representations of
valence, but higher-level representations of valence that extend across
modalities. Future research should continue to examine how the re-
presentation of different types of subjective emotional experience and
emotion from different modalities compare with those when viewing
intrinsically emotionally powerful stimuli. Another consideration is
that we used a one-back task, which involves working memory pro-
cesses. While the working memory demands were the same across all
emotional constructs, it is unclear if the results may differ if images are
presented under passive viewing rather than in a one-back task.

Modern imaging and statistical techniques allow us to explore long-
debated questions with a new lens. MVPA has particular strengths in
the debate of emotional representation, since evidence seems to suggest
network organization of emotions, rather than simple isomorphic ac-
tivity in unique brain structures. Our data suggest that many emotions
are distinguishable early in the evoked response, and that at least some
emotional constructs carry unique signatures – perhaps reflecting the
timeline of the constructive nature of discrete emotions. While these
data utilize and represent information that we are able to extract and
measure, it still remains unknown what information the brain uses to
interpret emotions (cf. De-Wit et al., 2016). Another open question is
which brain areas are involved in the temporal representation of
emotion categories. Here, whole-brain MEG was used in the analysis,
which does not allow differentiating between the contributions of dif-
ferent brain areas. Future studies could investigate the spatio-temporal
dynamics of emotion categories by using our approach on reconstructed
activity from different brain areas (using e.g., beamformer techniques
(Van Veen et al., 1997)). Nevertheless, since we are able to differentiate
signal from both valence and arousal ratings and several distinct
emotional categories, in a timeline that might represent the con-
structive nature of discrete emotion experience, these findings not only

inform how the brain may represent emotional constructs, but also shed
light on the way that we should discuss, explore, theorize, and ulti-
mately define them.
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