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A B S T R A C T

Multivariate decoding methods applied to neuroimaging data have become the standard in cognitive neuroscience for unravelling statistical dependencies between
brain activation patterns and experimental conditions. The current challenge is to demonstrate that decodable information is in fact used by the brain itself to guide
behaviour. Here we demonstrate a promising approach to do so in the context of neural activation during object perception and categorisation behaviour. We first
localised decodable information about visual objects in the human brain using a multivariate decoding analysis and a spatially-unbiased searchlight approach. We then
related brain activation patterns to behaviour by testing whether the classifier used for decoding can be used to predict behaviour. We show that while there is
decodable information about visual category throughout the visual brain, only a subset of those representations predicted categorisation behaviour, which were
strongest in anterior ventral temporal cortex. Our results have important implications for the interpretation of neuroimaging studies, highlight the importance of
relating decoding results to behaviour, and suggest a suitable methodology towards this aim.
Introduction

Multivariate pattern analysis (MVPA), also called brain decoding, is a
powerful tool to establish statistical dependencies between experimental
conditions and brain activation patterns (Carlson et al., 2003; Cox and
Savoy, 2003; Haxby et al., 2001; Haynes, 2015; Kamitani and Tong,
2005; Kriegeskorte et al., 2006). In these analyses, an implicit assump-
tion often made by experimenters is that if information can be decoded,
then this information is used by the brain in behaviour (de-Wit et al.,
2016; Ritchie et al., 2017). However, the decoded information could be
different (e.g., epiphenomenal) from the signal that is relevant for the
brain to use in behaviour (de-Wit et al., 2016; Williams et al., 2007),
highlighting the need to relate decoded information to behaviour.
Importantly, this implicit assumption of decoding models leads to test-
able predictions about task performance (Naselaris et al., 2011). Previous
work has for example correlated decoding performances to behavioural
accuracies (Bouton et al., 2018; Freud et al., 2017; Raizada et al., 2010;
van Bergen et al., 2015; Walther et al., 2009; Williams et al., 2007).
However, this does not model how individual experimental conditions
relate to behaviour. Another approach has been to compare neural and
behavioural similarity structures (Bracci and Op de Beeck, 2016; Cichy
et al., 2017; Cohen et al., 2016; Grootswagers et al., 2017a; Haushofer
et al., 2008; Mur et al., 2013; Proklova et al., 2016; Wardle et al., 2016).
While this approach allows to link behaviour and brain patterns at the
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level of single experimental conditions, it is unclear how this link carries
over to decision making behaviour such as categorisation (but see Cichy
et al. (2017) for recent developments).

Recently, a novel methodological approach, called the distance-to-
bound approach (Ritchie and Carlson, 2016), has been proposed to
connect brain activity directly to perceptual decision-making behaviour
at the level of individual experimental conditions. The rationale behind
this approach (Bouton et al., 2018; Carlson et al., 2014; Kiani et al., 2014;
Philiastides and Sajda, 2006; Ritchie and Carlson, 2016) is that for
decision-making tasks, the brain applies a decision boundary to a neural
activation space (DiCarlo and Cox, 2007). Similarly, MVPA classifiers fit
multi-dimensional hyperplanes to separate a neural activation space. In
classic signal-detection theory (Green and Swets, 1966) and
evidence-accumulation models of choice behaviour (Brown and Heath-
cote, 2008; Gold and Shadlen, 2007; Ratcliff and Rouder, 1998; Smith
and Ratcliff, 2004), the distance of the input to a decision boundary re-
flects the ambiguity of the evidence for the decision (Green and Swets,
1966). Decision evidence, in turn, predicts choice behaviour (e.g., Ashby,
2000; Ashby and Maddox, 1994; Britten et al., 1996; Gold and Shadlen,
2007; Shadlen and Kiani, 2013) which also has clear neural correlates
(e.g., Britten et al., 1996; Ratcliff et al., 2009; Roitman and Shadlen,
2002). If for a decision task (e.g., categorisation), the brain uses the same
information as the MVPA classifier, then the classifier's hyperplane re-
flects the brain's decision boundary. This in turn predicts that distance to
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the classifier's hyperplane negatively correlates with reaction times for
the decision task. In the distance-to-bound approach, finding such a
negative distance-RT-correlation shows that the information is then
suitably formatted to guide behaviour. “Suitably formatted to guide
Fig. 1. General experimental rationale. Stimuli (A,C) used to map fMRI brain respo
of reaction times on object categorisation tasks. Reaction times for categorisation cont
in the fMRI experiment. On each trial, a stimulus was displayed for 250ms, and par
imate) by pressing one of two keys. F. The two-partite approach to separately localize
For both parts, a local cluster of neighbouring voxels (i.e., searchlight) was used to tra
(e.g., animacy). To localize decodable information, the classifier was tested on left-out
localize information that was suitably formatted for read-out in a categorisation tas
reaction times for the same object images on the same classification task. Repeated for
one of correlations. For visualisation, significant correlation voxels were superimpose
significant voxels.
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behaviour” here means that the information is structured in such a way
that the brain can apply a linear read out process to this representation to
make a decision (importantly, this does not imply a causal link with
behaviour). Carlson et al. (2014) demonstrated the promise of the
nses and brain coverage (B,C) for fMRI study 1 and 2 respectively. E. Acquisition
rasts were collected in a different pool of participants than the ones participating
ticipants categorised it into two categories (exemplarily here: animate vs inan-
decodable information and information that is suitable for read out in behaviour.
in a linear support vector machine (SVM) on an image category classification task
data, storing the classification accuracy at the centre voxel of the searchlight. To
k, the distances of objects to the classifier hyperplane were correlated with the
every voxel, this resulted for each subject in one map of decoding accuracies and
d on significant decoding accuracy voxels, each showing group average values in
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distance-to-bound approach in a region of interest based analysis using
fMRI. Here we go beyond this work by using the distance-to-bound
method and a spatially unbiased fMRI-searchlight approach to create
maps of where in the brain information can be used to guide behaviour.

Materials and methods

In this study, we separately localised information that is decodable,
and information that is suitably formatted to guide behaviour in the
context of decodable information about visual objects and object cate-
gorisation behaviour. To ensure robustness and generality of our results,
we analysed in parallel two independent fMRI datasets (Cichy et al.,
2014, 2016), with different stimulus sets, and in relation to partly
overlapping categorisation behaviours. Overall, this allowed us to
investigate the relationship between decodable information from brain
activity and categorisation behaviour for seven different distinctions:
animate versus inanimate, faces versus bodies, human versus animal,
natural versus artificial, tools versus not tools, food versus not food, and
transport versus not transport. Note that the negative ‘not-X’ category
was defined as all stimuli that did fall into one of the aforementioned
classes. Categorisation reaction times for those stimuli were collected on
Amazon's Mechanical Turk. In this section, we describe the two-step
searchlight procedure used to create decoding and correlation maps of
areas involved in visual object categorisation.

Experimental design

Stimuli
Stimuli for experiment 1 consisted of 92 visual objects, segmented on

a white background (Fig. 1A). Stimuli consisted of animate and inani-
mate objects. The animate objects could be further divided into faces,
bodies, humans and animals. Inanimate objects consisted of natural (e.g.,
plants or fruits) and man-made items (e.g., tools or houses). The stimulus
set for experiment 2 consisted of 118 visual objects on natural back-
grounds (Fig. 1C). A small proportion of the objects (27) were animate.
The inanimate objects included subcategories such as tools, or food
items. In both experiments, participants were presented with the visual
object stimuli while performing an orthogonal task at fixation. Stimuli
were displayed at 2.9� (Experiment 1) and 4.0� (Experiment 2) visual
angle with 500ms duration. Images were displayed (overlaid with a grey
fixation cross) for 500ms in random order.

fMRI recordings
The first experiment (Cichy et al., 2014) had high resolution fMRI

coverage of the ventral visual stream (Fig. 1B) from 15 participants with
a 2mm isotropic voxel resolution. The second experiment (Cichy et al.,
2016) had whole brain from 15 participants with a 3mm isotropic voxel
resolution. In both experiments, at the start of a session, structural images
were obtained using a standard T1-weighted sequence. fMRI data were
aligned and coregistered to the T1 structural image, and then normalized
to a standard MNI template. General linear models were used to compute
t-values for each stimulus (92 and 118, respectively) against baseline.

Reaction time data
We obtained reaction times for the stimuli in multiple different cat-

egorisation contrasts (Fig. 1A&B). For experiment 1, these were animate
versus inanimate, face versus body, human versus animal, and natural
versus artificial. For experiment 2, we tested animate versus inanimate,
tool versus not tool, food versus not food, and transport versus not
transport. The RTs were collected using Amazons Mechanical Turk
(MTurk). For each of the categorisation contrasts, 50 unique participants
performed a categorisation task using the same stimuli as were used in
collecting the fMRI data. Participants were instructed to “Categorise the
images as fast and accurate as possible using the following keys: (z for X,
m for Y)”, where X and Y would be replaced with the relevant categories
(e.g., animate and inanimate) for the contrast. On each trial, an image
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was presented for 500ms, followed by a black screen until the partici-
pant's response (Fig. 1C). The presentation order of the stimuli was
randomized and stimuli did not repeat. This resulted in 50 reaction time
values per exemplar (one for each participant). Each participant's reac-
tion times were z-scored. Next, we computed the median reaction time
(across participants) for each exemplar. His resulted in one reaction time
value per exemplar, which were used in the rest of the study.

Statistical analysis

Searchlight procedure
For each categorisation contrast and subject, we used a searchlight

approach (Haynes et al., 2007; Kriegeskorte et al., 2006) to create maps
of decoding accuracy and of correlations between distance to the clas-
sifier boundary and categorisation reaction time. In contrast to
pre-defined ROI's, which are used to test a-priori hypotheses about the
spatial origin of information in the brain, the searchlight results in a
spatially unbiased map of decodable information. An overview of the
approach is presented in Fig. 1D.

To create the decoding accuracymaps, we used a standard searchlight
decoding approach (Grootswagers et al., 2017c; Haynes, 2015; Krie-
geskorte et al., 2006; Pereira et al., 2009), as implemented in the CoS-
MoMVPA decoding toolbox (Oosterhof et al., 2016). In detail, at each
spatial location (voxel) in an fMRI image, a support vector machine
(SVM) was used to classify visual object category based on local brain
patterns, resulting in a map of classification accuracies. We then deter-
mined the subset of the locations at which brain patterns were suitably
formatted for read-out by the brain using the distance-to-bound approach
(Ritchie and Carlson, 2016) in a second searchlight analysis. Analogous
to the decoding analysis, at each voxel, an SVM was trained to classify
visual objects. Diverging at this point from the decoding approach we did
not test the classifier, but rather obtained the distance for each exemplar
to the hyperplane set by the SVM. We then correlated those distances to
reaction times acquired in separate categorisation tasks. The contribution
of each category was assessed individually, by performing the correla-
tions separately for the two sides of the categorisation (e.g., one corre-
lation for animate and one for inanimate exemplars). For each
categorisation task this resulted in two correlation maps per subject. The
maps of decoding accuracy and correlations were assessed for signifi-
cance at the group level using sign-rank tests for random-effects infer-
ence. The results were thresholded at p< 0.05, using the false discovery
rate (FDR (Benjamini and Hochberg, 1995);) to correct for multiple
comparisons at the voxel level.

Relating the results to topographical locations of the visual system
For the animacy categorisation contrasts, we identified the locations

of the significant voxels with respect to ROIs of the visual system. The
significant voxels in the decoding maps and correlation maps were
compared to probabilistic topographic maps of visual processing areas
(Wang et al., 2015), which represent for each voxel the visual area with
the highest probability. A percentage score for each ROI was then
computed, reflecting the percentage of voxels in this ROI that were sig-
nificant at the group level. We obtained a bootstrapped distribution of
percentage scores for each ROI by repeating this procedure 10,000 times,
while randomly sampling the subjects with replacement and recomput-
ing the group level statistics. We report the 5th, 50th and 95th percentiles
of this distribution. This approach allows quantifying the difference be-
tween the number of decoding voxels and correlation voxels per visual
ROI.

Results

We examined the relationship between decodable information and
information that is suitably formatted for read-out by the brain in the
context of decodable information about visual objects and object cate-
gorisation behaviour. We determined the relationship between
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Fig. 2. Relationship between decodable information and categorisation behaviour for animacy. Decodable information is shown in hot colours and distance-
RT-correlations in cool colours. Colour intensities reflect the mean across subjects. Only significant voxels (N¼ 15, sign-rank test, p< 0.05 fdr-corrected) are shown.
Data are projected onto axial slices of a standard T1 image in MNI space. A. In experiment 1, decodable animacy information (hot colours) was found throughout the
ventral stream. A correlation between distance to the classifier boundary and reaction time for animate stimuli (cool colours) was found in a subset of these areas. The
colour intensities depict the mean across subjects. B. The results of the analysis for experiment 2 corroborated these findings, and showed decodable information in
prefrontal areas and in the dorsal visual stream. Correlations between distance and reaction time were also present in the dorsal stream.
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decodable information and behaviour separately. First, we determined
where information about objects is present in brain patterns using
decoding in a standard fMRI searchlight decoding analysis (Haynes et al.,
2007; Kriegeskorte et al., 2006). We then determined the subset of the
locations at which brain patterns were suitably formatted for read-out by
the brain using the distance-to-bound approach (Ritchie and Carlson,
2016) in a second searchlight analysis. The subject-specific searchlight
results were subjected to inference statistics at the group level using
one-sided sign rank tests and thresholded at p< 0.05 (fdr-corrected for
multiple comparisons across voxels).
Table 1
Results for all categorisation contrasts. For all categorisation contrasts, we
report the number of significant voxels (after correction for multiple compari-
sons), its peak value (maximum for decoding or minimum for distance-RT-
correlation), and the peak's location in MNI-XYZ coordinates.

Contrast #significant
voxels

Max/
min

X Y Z

A) decoding 'animate' vs
'inanimate' (exp 1)

11745 0.80 36 �52 �15

Distance-RT-correlation
'animate'

6410 �0.38 38 �58 �19

Distance-RT-correlation
'inanimate'

0 �0.16 �48 �58 5

B) decoding 'human' vs
'animal'

4863 0.69 22 �90 �13

Distance-RT-correlation
'human'

0 �0.29 30 �58 �15

Distance-RT-correlation
'animal'

0 �0.17 48 �46 �4

C) decoding 'face' vs 'body' 10661 0.84 44 �78 �10
Distance-RT-correlation
'face'

226 �0.32 40 �76 �15

Distance-RT-correlation
'body'

0 �0.20 �54 �68 16

D) decoding ‘natural’ vs
'artificial'

0 0.63 30 �52 �17

Distance-RT-correlation
'natural'

0 �0.27 42 �72 �4

Distance-RT-correlation
'artificial'

0 �0.24 26 �88 3

E) decoding 'animate' vs
'inanimate' (exp 2)

8824 0.80 36 �55 �11

Distance-RT-correlation
'animate'

2015 �0.34 51 �73 �2

Distance-RT-correlation 0 �0.12 �21 �43 �2
A subset of locations that have decodable information about animacy also
had information suitably formatted for animacy categorisation behaviour

Animacy is a pervasive and basic object property according to which
any object can be classified as animate or inanimate (Caramazza and
Shelton, 1998). Previous studies have shown that the division of animate
versus inanimate objects is reflected in the large-scale architecture of
high-level visual areas such as the ventral temporal cortex (VTC) (Car-
amazza and Shelton, 1998; Grill-Spector and Weiner, 2014; Kriegeskorte
et al., 2008), However, it has also been shown that animacy can be
decoded not only from VTC, but from the whole ventral visual stream
(Cichy et al., 2016; Grill-Spector and Weiner, 2014; Long et al., 2017).
Furthermore, categorical object responses have also been found in the
dorsal visual stream (Bracci et al., 2017; Freedman and Assad, 2006;
Konen and Kastner, 2008) and in frontal areas (Freedman et al., 2001,
2003). This prompts the question of where in the visual system object
representations are suitably formatted for read-out by the brain for ani-
macy decisions.

Corroborating previous studies, we found decodable information
about animacy in the entire ventral visual stream from the occipital pole
to anterior ventral temporal cortex (Fig. 2AB, Table 1AE, N¼ 15, one-
sided sign-rank test, p< 0.05 fdr-corrected). In addition, we found
decodable information in dorsal and prefrontal cortex (Fig. 2B) in
experiment 2 which had full brain coverage. Localising the brain repre-
sentations suitable to guide animacy categorisation behaviour (using the
distance-to-bound approach) revealed convergent evidence across ex-
periments that only a subset of voxels containing decodable information
fulfilled this criterion. In detail, distance-RT-correlations for animate
objects were strongest in the high-level regions of the ventral and the
dorsal stream. For inanimate objects, we found no voxels with significant
distance-RT-correlations (Carlson et al., 2014; Grootswagers et al.,
2017b).
'inanimate'
F) decoding 'tool' vs 'not tool' 0 0.58 �30 �94 7
Distance-RT-correlation
'tool'

0 �0.25 �33 �13 19

Distance-RT-correlation
'not tool'

0 �0.24 �33 �52 �17

G) decoding 'transport' vs
'not transport'

0 0.59 33 �94 1

Distance-RT-correlation
'transport'

0 �0.32 15 50 4

Distance-RT-correlation
'non-transport'

0 �0.18 �33 �55 �14

H) decoding 'food' vs 'not
food'

1092 0.62 36 �55 �14

Distance-RT-correlation
'food'

0 �0.16 �18 26 �5

Distance-RT-correlation
'not food'

154 �0.13 27 �40 �14
The proportion of region-specific representations suitably formatted for
behaviour increases along the ventral stream and decreases along the dorsal
stream

We next explicitly determined the degree to which representations in
single brain regions within the ventral and dorsal streams are suitably
formatted for behaviour. For this we parcellated the cortex (Fig. 3A)
using a probabilistic topographic map of visual processing areas (Wang
et al., 2015). For each region, we calculated the ratio between the
number of significant voxels in the decoding analysis and the total
number of voxels, so that a high ratio indicates that a large part of a
region contains object representations with categorical information.
Similarly, we calculated the ratio between the number of significant
voxels in the distance-to-bound analysis and the total number of voxels.
256
Here, a high ratio indicates that a large part of a region contains object
representations that are suitably formatted for read out in a catego-
risation task.

In the ventral stream, our results suggest that these ratios increase
with processing stage, from early visual areas to high-level visual areas,
with highest ratios in ventral occipital (VO) and parahippocampal (PHC)
cortex (Fig. 3 B&C). In contrast, in the dorsal stream we observed a
decrease of the correlation ratio with processing stage. In addition, sig-
nificant animacy decoding information was found in similar proportions
in the ventral-temporal areas as in lateral-occipital areas, however, the
proportion of voxels with information suitable for categorisation was
lower in lateral-occipital areas. This is consistent with the notion that



Fig. 3. Quantifying the decodable information in visual areas and their contribution to categorisation behaviour. A. Locations of topographical ROIs of the
visual system (Wang et al., 2015), containing early visual cortex (EVC) areas V1 and V2, mid-level areas V3 and hV4, high level ventral occipital (VO) and para-
hippocampal cortex (PHC), temporal occipital (TO) and lateral occipital (LO) areas, areas in the intra-parietal sulcus (IPS), the superior parietal lobule (SPL), and the
frontal eye fields (FEF). B–C. The ratio between significant voxels in an ROI and the size of the ROI. Orange points show the ratio of voxels within the ROI that had
significant animacy decoding performance. Blue points show the ratio of voxels with a significant correlation between distance to the hyperplane and RT for ‘animate’.
The lower, middle and upper points on these lines indicate 5th, 50th, and 95th percentiles (bootstrapping of participants 10,000 times). These results quantify the
increasing contribution of early to late areas in the ventral visual stream to animacy categorisation behaviour.
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while both these regions contain object representations, the VTC contains
location-invariant representations which are essential for object catego-
risation (Cichy et al., 2013; Haushofer et al., 2008; Schwarzlose et al.,
2008; Williams et al., 2007). The results were similar between experi-
ments, with the exception for area TO, which had a smaller proportion of
voxels with RT-correlations in experiment 1. It is possible that this dif-
ference was caused by the differences between the stimuli (e.g.,
segmented objects versus objects in scenes) used in the experiments.
Alternatively, this difference could be attributed to the size of the
searchlight sphere, which was larger in experiment 2 than in experiment
1 due to their different voxel sizes.

In sum, these results show that representations along the ventral
stream are suitably formatted for read-out of categorical information
257
(Cichy et al., 2013; Grill-Spector and Weiner, 2014). In contrast, repre-
sentations in the dorsal stream might be shaped for the read-out in
different tasks (Bracci et al., 2017; Freud et al., 2017). These results also
suggest that intermediate stages along the ventral and dorsal streams
may be similar or partly shared, as suggested by the similar ratios of
information suitable for read-out.
Decodable information about subordinate categorisation tasks is also
suitably formatted for categorisation behaviour

While animacy categorisation may be based on large-scale represen-
tational differences in the visual brain (Carlson et al., 2013; Downing
et al., 2006; Grill-Spector and Weiner, 2014; Kriegeskorte et al., 2008),
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subordinate categorisation tasks (e.g., faces, bodies, tools) may depend
more on fine grained patterns in focal brain regions (Downing et al.,
2001; Downing and Peelen, 2016; Kanwisher et al., 1997). Here, we
tested whether decodable information about subordinate category
membership is also suitably formatted for read out in respective cate-
gorisation tasks. We tested two subordinate contrasts for the animate
exemplars in experiment 1: face versus body, and human versus animal
using the same general procedure as for animacy. We found that both
contrasts were decodable (Table 1B–C). We found a significant correla-
tion between distance to the classifier hyperplane and reaction times for
faces in the face versus body task (Fig. 4A). We found no significantly
decodable information or significant correlations for the natural versus
artificial objects (Table 1D). Of the subordinate categorisation contrasts
in experiment 2 (food, transport or tool versus everything else), transport
and tool versus everything else were not significantly decodable infor-
mation nor had they significant correlations (Table 1F–G). Food versus
not food resulted in significant decodable information, and significant
distance-RT correlations were present for this contrast in the ‘not food’
category (Fig. 4B, Table 1H). Taken together, for some subordinate cat-
egorisation contrasts that were decodable, we were successful in local-
ising brain patterns suitably formatted for read-out in behaviour.

Discussion

Dissociating between decodable information and information that is used in
behaviour

The aim of this study was to examine where in the brain decodable
information is suitably formatted for read-out by the brain in behaviour.
We found that only a subset of information that is decodable could be
related to behaviour using the distance-to-bound approach, which argues
for a partial dissociation between decodable information and information
that is relevant for behaviour. This speaks to a current challenge in
neuroimaging, which is to show that information visible to the experi-
menter is in fact used by the brain (de-Wit et al., 2016; Ritchie et al.,
2017). To illustrate, consider the question about what regions are used by
the brain to perform an object animacy categorisation task (DiCarlo et al.,
2012; Grill-Spector and Weiner, 2014). On its own, the result of the
animacy decoding searchlight might be interpreted as the brain using
animacy information from anywhere in the ventral stream. However,
when investigating this interpretation directly using the
distance-RT-correlation results, it becomes clear that object animacy
information is suitably represented for read-out in mid- and high-level
visual areas only.

It is important to note that not finding a correlation between distance
to the classifier hyperplane and RT does not imply that the information
revealed using the decoding approach is irrelevant or epiphenomenal.
The distance-to-bound approach taken here makes specific assumptions
about the brain's read-out process, such as distance in representational
space as the measure for evidence, and a monotonic relationship between
distance and reaction time (Ritchie and Carlson, 2016). Note that this
model of readout follows from the assumptions behind the decoding
methods (Ritchie and Carlson, 2016; Ritchie et al., 2017). While the
model may not be perfect, our results stress the importance of explicitly
testing models of readout when decoding information from the brain.
Finding the correct model of readout would significantly increase the
capacity of cognitive neuroscience to infer brain-behaviour relationships.
Other assumptions follow from those imposed by the decoding approach,
such as the binary classification, the size of the searchlight radius, the
choice of classifier. For example, it could be that the representations are
relevant in a different task (Grootswagers et al., 2017b; Ritchie and
Carlson, 2016), or that read-out involves pooling over larger spatial
scales or multiple brain areas. Therefore, the current approach only al-
lows the positive inference on the level of suitability of decoded infor-
mation for behaviour in the context of the current task and decoding
parameters. On the other hand, a correlationwith behaviour still does not
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prove that the information is used by the brain, but it shows that the
information is at least formatted in a way that is suitable to be used by the
brain for decisions. Future work can use causal measures (e.g., TMS)
targeting the areas highlighted in the current results.

The contribution of ventral and dorsal visual regions to categorisation
behaviour

We found that neural representations suitably formatted for behav-
iour in categorisation were most prominently located in the anterior
regions of the VTC. This corroborates previous studies (Afraz et al., 2006;
Carlson et al., 2014; Hong et al., 2016; Hung et al., 2005), and reinforces
the tight link between VTC and visual categorisation behaviour. In these
areas, our results provide converging evidence for the (implicit)
assumptionmade in neuroimaging studies, which is that information that
is available to the experimenter is also available for read out by the brain
in behaviour (cf. de-Wit et al., 2016).

However, we found that correlations between distance to boundary
and RT were not restricted to anterior regions of the VTC, but were also
prominent in V3 and hV4. This is consistent with the view that lower
level visual features encoded in mid-level visual regions could aid faster
read-out of category information. V4 is thought of as an intermediate
stage of visual processing that aggregates lower level visual features into
invariant representations (Riesenhuber and Poggio, 1999). It has been
proposed that direct pathways from V4 to decision areas allow the brain
to exploit visual feature cues for fast responses to ecologically important
stimuli (Hong et al., 2016; Kirchner and Thorpe, 2006; Thorpe et al.,
1996), such as identifying faces (Crouzet et al., 2010; Honey et al., 2008).
An alternative possibility is that read out is not happening directly from
V4, but its representational structure is shaped by the low-level feature
differences in animacy. This structure is then largely preserved when it is
communicated to more anterior areas, leading to similar
distance-RT-correlations. Both of these accounts are also consistent with
recent findings that show differential responses for object categories in
mid-level visual areas (Long et al., 2017; Proklova et al., 2016). The
extent to which visual features contribute to the read-out process could
be further investigated by using the approach from this study with
different stimulus sets that control for these features (Kaiser et al., 2016;
Long et al., 2017; Proklova et al., 2016).

We found that distance-RT-correlations were also present in early
parietal areas. The classical view is that the ventral and dorsal visual
streams are recruited for different function (Ungerleider and Mishkin,
1982). However, areas in the ventral and dorsal streams have been found
to exhibit similar object-selective responses (Freud et al., 2017; Konen
and Kastner, 2008; Sereno and Maunsell, 1998; Silver and Kastner,
2009). Consistent with this, we found similar RT-distance-correlations in
mid-level areas in the ventral and dorsal streams. However, our results
also showed that the proportion of correlations decreased along the
dorsal stream, while they increased along the ventral stream. This sug-
gests that representations in the ventral and dorsal streams undergo
similar transformations at first, and then diverge for different goals.

Without a task, neural object representations in the VTC are formatted for
read-out in categorisation decisions

Here, the fMRI participants performed an orthogonal task, and were
not actively categorising. Despite this, categorisation reaction times
could still be predicted from representations in the visual stream. This
highlights that, without a categorisation task, information in the visual
system is represented in a way that is suitable for read out in behaviour
(Carlson et al., 2014; Ritchie et al., 2015). This representation possibly
reflects a more general property of the object that aids its categorisation,
such as how typical it is for that category (Grootswagers et al., 2017b;
Iordan et al., 2016), or how frequently we encounter the object in our
lives. In addition, the orthogonal task in the scanner has the advantage
that it avoids RT- and difficulty confounds (see e.g., Hebart and Baker,
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Fig. 4. Relationship between decodable information and behaviour for subordinate categorisation tasks. Decodable information is shown in hot colours and
distance-RT-correlations in cool colours. Colour intensities reflect the mean across subjects. Only significant voxels (N¼ 15, sign-rank test, p< 0.05 fdr-corrected) are
shown. Data are projected onto axial slices of a standard T1 image in MNI space. A. In experiment 1, decodable face versus body information (hot colours) was found in
the entire ventral stream. A distance-RT-correlation for the face stimuli (cool colours) was found in a subset of these areas. B. In experiment 2, food versus not food was
decodable in some areas in the ventral visual stream. A distance-RT-correlation for the ‘not food’ stimuli was found in a subset of these areas.

T. Grootswagers et al. NeuroImage 179 (2018) 252–262
2017; Woolgar et al., 2014). Future studies might use the
distance-to-bound approach with participants actively performing the
same task in the scanner, where we predict that areas involved in the
decision making and execution processes would contain information that
correlates with reaction times. For example, some areas preferentially
represent task-relevant information, such as areas in the prefrontal cortex
(Duncan, 2001; Jackson et al., 2016; Woolgar et al., 2016), and in the
parietal stream (Bracci et al., 2017; Freedman and Assad, 2016; Jeong
and Xu, 2016). In the absence of an animacy categorisation task, one
would predict that animacy information would not be strongly repre-
sented in these areas. Yet, our results showed that animacy information
can be decoded from prefrontal and parietal areas when participants
perform an orthogonal task. However, our results did not provide evi-
dence that the animacy information in these areas was suitably formatted
for readout. This again argues for a dissociation between information that
can be decoded, and information that is suitable for read out in behav-
iour. A prediction that follows from this is that performing an active
object categorisation task in the scanner would change the representa-
tions in these task-relevant areas so that they become predictive of re-
action times (Bugatus et al., 2017; McKee et al., 2014). Similarly,
representations can change when participants perform different tasks on
the same stimuli, such as categorising a specific feature (e.g., colour), for
which suitably formatted information would be predicted in other areas.

Asymmetric distance-RT-correlations in binary categorisation tasks

In both experiments, we found correlations between distance and
reaction times for animate stimuli, but none for the inanimate stimuli.
This is consistent with previous work (Carlson et al., 2014; Grootswagers
et al., 2017b; Ritchie et al., 2015), which argued that this discrepancy
might be caused by inanimate being a negatively defined category (i.e.,
“not animate”). Under this hypothesis the animacy categorisation task
can be performed by collecting evidence for animate stimuli and
responding inanimate only when not enough evidence was accumulated
after a certain amount of time. Here, we tested a prediction of this hy-
pothesis by contrasting two positively defined categories, face versus
body, and found that there was a distance-RT-correlation only for faces.
This goes against the notion of the negative definition of inanimate as the
main reason for a lack of correlation. However, it still is possible that
observers still treated these tasks as ‘A’ or ‘NOT A’, with ‘A’ being the
category that is easiest to detect (Grootswagers et al., 2017b). For
example, perceptual evidence for a face would be easier to obtain than
evidence for a body-part, as faces share low level visual features (Crouzet
and Thorpe, 2011; Honey et al., 2008; Wu et al., 2015). Thus, while not
explicitly specified as a negative category, it could have been treated as
such.

This suggests that the binary categorisation might be an unnatural
way of approaching human categorisation behaviour in the real world.
Other operationalisations such as picture naming or visual search may be
better suited to capture the relevant behaviours (cf. Krakauer et al.,
2017). Still, it is important to note that the binary task matches the brain
decoding task performed by the classifier. The above-chance decoding
accuracy in the brain decoding task is commonly interpreted as a similar
dichotomy in the brain's representation that the brain can use in a de-
cision. However, when only the information in one of the categories (i.e.,
animals or faces) can be used to predict decision behaviour, as shown
here, then this interpretation needs to be revisited.
260
Limitations of the approach

Our results highlight the importance of relating decoding to behav-
iour and demonstrated one possible methodology to address this issue.
However, the approach taken here is subject to a set of limitations which
may preclude its application in other settings. Firstly, here we studied a
binary visual object categorisation task. It is not possible to describe all
behaviours as binary tasks, and reaction times are not always a mean-
ingful measure for behaviour. This can restrict the generalisability of the
current approach to other domains. Secondly, finding an RT-correlation
does not reveal the source of the variance in evidence for a decision.
As the method remains correlational, it is important to stress that it can
only go as far to show that information is suitably formatted to be used by
the brain for decisions, and that the critical test of this relationship will
require causal measures. In the animacy task, one possible source of
variance is typicality, which modulates animacy categorisation (Posner
and Keele, 1968; E. H. Rosch, 1973; E. Rosch and Mervis, 1975) and
decoding performance (Iordan et al., 2016), and typicality ratings have
been shown to correlate with distance to the classifier decision boundary
(Grootswagers et al., 2017b). Yet, there is always the possibility of other
covariates. For example, larger or more colourful objects may be easier to
identify and therefore have a faster reaction times and larger distances,
and it is not always feasible to control for all possible covarying features.
Note that this is also a strength of the approach; if colourful objects are
indeed easier to identify (i.e., the brain is using the feature), then areas
where this feature is represented would have stronger correlations be-
tween distance to boundary and reaction times. If a stimulus property is
thought to (unintentionally) drive decoding and behaviour in the same
way, then this property should be controlled for in the stimulus set.

Conclusion

In this study, we combined the distance-to-bound approach (Ritchie
and Carlson, 2016) with a searchlight decoding analysis to find brain
areas with decodable information that is suitable for read-out in behav-
iour. Our results showed that decodable information is not always
equally suitable for read-out by the brain in behaviour. This speaks to the
current debate in neuroimaging research about whether the information
that we can decode is the same information that is used by the brain in
behaviour (de-Wit et al., 2016).
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