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A B S T R A C T

In our daily lives, we are bombarded with a stream of rapidly changing visual input. Humans have the remarkable capacity to detect and identify objects in fast-
changing scenes. Yet, when studying brain representations, stimuli are generally presented in isolation. Here, we studied the dynamics of human vision using a
combination of fast stimulus presentation rates, electroencephalography and multivariate decoding analyses. Using a presentation rate of 5 images per second, we
obtained the representational structure of a large number of stimuli, and showed the emerging abstract categorical organisation of this structure. Furthermore, we
could separate the temporal dynamics of perceptual processing from higher-level target selection effects. In a second experiment, we used the same paradigm at 20Hz
to show that shorter image presentation limits the categorical abstraction of object representations. Our results show that applying multivariate pattern analysis to
every image in rapid serial visual processing streams has unprecedented potential for studying the temporal dynamics of the structure of representations in the human
visual system.
1. Introduction

The human brain can effortlessly extract abstract meaning, such as
categorical object information, from a visual image, and can do so in less
than 200 milliseconds (Carlson et al., 2013; Cichy et al., 2014; Contini
et al., 2017; Keysers et al., 2001; Mack et al., 2008; Mack and Palmeri,
2011; Potter, 1975, 1976; Potter et al., 2014; VanRullen and Thorpe,
2001). The temporal dynamics of the emerging representation of visual
objects has been studied extensively using multivariate decoding
methods and neuroimaging methods with high temporal resolution, such
as EEG and MEG. In these experiments, stimuli are generally presented
with a large inter-stimulus interval (ISI) to avoid contamination from
temporally adjacent stimuli, typically around one second (Carlson et al.,
2013; Cichy et al., 2014; Grootswagers et al., 2017a; Isik et al., 2014;
Kaneshiro et al., 2015). This design allows the brain to process each
stimulus and avoids temporally overlapping stimulus representations.
While such designs have yielded important insights into the representa-
tional dynamics of object processing, in the natural world, we are bom-
barded with a constant stream of changing visual input. The standard
paradigm, in which stimuli are presented in isolation with a large ISI,
thus may not yield the most accurate description the temporal dynamics
of emerging object representations in the real world. One major
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advantage of multivariate decoding methods (Grootswagers et al.,
2017b; Haynes, 2015) is that they allow testing for statistical de-
pendencies in data without a resting baseline. Exploring representational
dynamics using decoding and fast visual presentation rates therefore
offers unique potential for investigating visual processing.

Here, we diverge from the traditional approach and propose a new
method for studying the representational dynamics of human vision. It
has been shown previously that stimuli presented at high presentation
rates are all processed to some degree by the visual system and that their
neural representations can co-exist in the visual system (Marti and
Dehaene, 2017; Mohsenzadeh et al., 2018; Rossion et al., 2015; Rousselet
et al., 2002). Behavioural work has additionally shown that the human
visual system can extract abstract information from a visual stimulus at
very fast presentation rates (Crouzet et al., 2010; Keysers et al., 2001;
Mac�e et al., 2005; Mack et al., 2008; Mack and Palmeri, 2015; Marti and
Dehaene, 2017; Potter, 1975, 1976; Potter et al., 2014; Rossion et al.,
2015; Thorpe et al., 1996). In the current study, we draw on this human
capacity and study visual object recognition using fast stimulus presen-
tation rates and multivariate decoding analyses of EEG evoked responses
(Grootswagers et al., 2017b). We used a rapid serial visual presentation
(RSVP) paradigm to study the representations of a large set of 200 visual
objects presented at a speed of 5 images per second (5Hz; 200ms per
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image). The objects were carefully selected to allow categorisation at
three different levels of abstraction. The high presentation rate enabled
us to obtain 40 repetitions of 200 different stimuli in a short EEG session.
The increased power elicited by the faster image presentation rates
allowed us to use a much larger stimulus set than previous studies, and to
analyse neural responses to all distractors, rather than a single target, in
the stream. We additionally examined the effect of higher level cognitive
processes on the emerging representations by having participants detect
targets that were identifiable based on low-level visual features or ab-
stract categories in separate trials. In doing so, we could disentangle the
temporal dynamics of visual processing and categorical abstraction of
non-target stimuli from target selection processes. We successfully
decoded different categorical contrasts for the 200 objects, suggesting
that individual stimuli were processed up to abstract categorical repre-
sentations. Strikingly, we found similar results in a follow-up
Fig. 1. Stimuli and design. A) Experimental stimuli. There were 200 images of objec
levels: Animacy (animate, inanimate), category (10 categories e.g., mammal, tool,
participants were asked to count the number of target objects from two categories: b
Trials consisted of all 200 images presented in random order, with 1–4 targets inter
session 1, and 20Hz sequences (50ms each) in session 2. C,D) Subject-averaged even
5Hz (C) and 20Hz (D) sequences (shaded areas show the standard-error across subje
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experimental session, where we used a much higher presentation rate of
20 images per second (20Hz; 50ms per image). The unprecedented
ability to test such large numbers of different stimuli in relatively short
EEG scanning sessions shows great potential for studying the dynamics of
the structure of information in the human visual system.

2. Methods

All stimuli and data can be found at https://osf.io/a7knv/.
2.1. Stimuli

We collected a stimulus set of 200 visual objects from different cat-
egories. Stimuli were obtained from the free image hosting website www.
pngimg.com. The categories were manually selected, guided by
ts (obtained from www.pngimg.com), organised in categories at three different
flower) and object (50 categories e.g., cow, dog, giraffe). In the experiment,
oats and geometric star shapes, each with eight images. B) Experimental design.
spersed throughout. Images were presented in 5Hz sequences (200ms each) in
t-related potentials (ERPs) at channel Oz for target and non-target images in the
cts).

https://osf.io/a7knv/
http://www.pngimg.com
http://www.pngimg.com
http://www.pngimg.com
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categorical hierarchies described in the literature (Caramazza and
Mahon, 2003; Caramazza and Shelton, 1998; Carlson et al., 2013; Con-
nolly et al., 2012; Grill-Spector and Weiner, 2014; Kiani et al., 2007;
Kriegeskorte et al., 2008a,b; Mahon and Caramazza, 2011; Peelen and
Caramazza, 2012; Rosch, 1973). There were two high level categories
(animate, inanimate) consisting of 10 categories (5 animate, and 5
inanimate categories). Each of these 10 categories (e.g., mammal, tool,
flower) was further separated into 5 object categories (e.g., cow, dog,
giraffe, etc.), which consisted of 4 images each (Fig. 1a). During the
experiment, participants were instructed to count target stimuli (Fig. 1b).
To examine how attending to different features of the stimuli affected the
emerging representations, we used two different sets of target stimuli.
The target stimuli were either boats, or geometric star shapes, and there
were eight exemplars of each target type (Fig. 1 – inset). We hypothesized
that detecting the star shapes among the other objects was possible using
low level visual cues, while for recognising boat targets, it was necessary
to process stimuli to a more abstract categorical level.

2.2. Participants and experimental procedure

Participants were 16 adults recruited from the University of Sydney
(5 females; age range 18–38 years) in return for payment or course
credit. The study was approved by the University of Sydney ethics
committee and informed consent was obtained from all participants.
Participants viewed 40 sequences of objects, each lasting between 40.2
and 40.8 s (depending on the number of targets in the sequence). In
each sequence, the 200 stimuli were presented in random order, for a
duration of 200 ms each with no gap between successive images (5Hz).
In addition to the 200 stimuli, target stimuli were inserted throughout
the sequence (Fig. 1b). In half of the sequences, the target stimuli were
boats, and in the other sequences, the target stimuli were geometric
stars (Fig. 1). A random number between 1 and 4 targets were presented
in the sequence, with the condition that targets could not appear within
the first 10 or last 10 images, and ensuring there were at least 12 non-
target stimuli between subsequent targets. At the start of each sequence,
participants were prompted to count the number of targets in the
sequence (“Count the boats in the trial” or “Count the stars in the trial”
in random order) and the 8 potential targets were shown. They were
instructed to respond at the end of the sequence using a 4-way button
box. After each sequence, participants received feedback. They started
the next sequence with a button press. This session lasted approximately
40min in total. After a short break, the second experimental session
started, and participants performed another 40 sequences using the
same procedure as session one, except that the images were presented
for only 50 ms (a presentation speed of 20Hz). The second session lasted
about 10 min.

2.3. EEG recordings and preprocessing

Continuous EEG data were recorded using a BrainVision ActiChamp
system, digitized at a 1000-Hz sample rate. The 64 electrodes were ar-
ranged according to the international standard 10–10 system for elec-
trode placement (Oostenveld and Praamstra, 2001). During recording, all
scalp electrodes were referenced to Cz. Preprocessing was performed
offline using EEGlab (Delorme and Makeig, 2004). Data were filtered
using a Hamming windowed FIR filter with 0.1 Hz highpass and 100Hz
lowpass filters, and were downsampled to 250Hz. No further pre-
processing steps were applied, and the channel voltages at each time
point were used for the remainder of the analysis. Epochs were created
for each stimulus presentation (except targets) ranging from [-100 to
1000ms] relative to stimulus onset. We initially had used the same range
for target-distractor decoding but found that this window did not capture
the full process. Therefore, for comparing targets versus distractors, we
created larger epochs ranging from [-100 to 2000ms] relative to the
onset of a target. For each target t, we selected at random another dis-
tractor in the same sequence and created a matching epoch relative to the
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onset of that distractor. Choosing distractors in this way meant that the
number of targets and distractors were balanced and matched per
sequence (and chance level accuracy is 50%) and that the neural repre-
sentations of targets and distractors were unlikely to overlap in a
consistent manner. Event-related potentials (Fig. 1C&D) for both the
targets and non-targets exhibited clear signal at the presentation fre-
quencies (see Fig. S1 for the associated scalp maps and amplitude
spectra).

2.4. Decoding analysis

We applied an MVPA decoding pipeline (Grootswagers et al., 2017b;
Oosterhof et al., 2016) to the EEG channel voltages, consisting of a reg-
ularised linear discriminant analysis (LDA) classifier applied in an
exemplar-by-sequence-cross-validation approach. Decoding was per-
formed within subject, and the results were analysed at the group level.
This pipeline was applied to each stimulus presentation epoch in the
sequence to investigate object representations in fast sequences. To
investigate the temporal dynamics of target selection, we compared
neural responses to targets with those to non-target distractor stimuli.
Classifiers were then trained to distinguish targets from non-targets
separately for the 5Hz and 20Hz sequences, and for boat and star
target sequences.

We investigated object representations for the 200 non-target images
using multiple categorical distinctions. First, we decoded three contrasts
that impose different amounts of categorical abstraction. At the highest
level, we decoded animacy (i.e., animate versus inanimate objects). The
next contrast was the category tier (10 classes, e.g., mammal, insect,
furniture, tool, etc.) where we decoded all 45 possible pairwise combi-
nations. The lowest categorical level was the object level (50 classes, e.g.,
cow, butterfly, table, hammer, etc.). Here, we decoded all 1225 possible
pairwise object combinations (i.e., cow versus butterfly, cow versus
table, etc.). Finally, at the lowest level, we investigated image-level
representations by decoding all 19900 possible pairwise combinations
of the 200 stimuli. We report the mean pairwise classification accuracies,
so that chance-level accuracy for all comparisons is at 50%, which aids
comparing accuracies across contrasts.

To investigate similarities in underlying object representation sig-
nals between the 5Hz and 20Hz presentations, we used a temporal
generalisation approach (Carlson et al., 2011; King and Dehaene, 2014;
Meyers et al., 2008). To test generalisation between the conditions, we
trained classifiers on all time points in the data from the 5Hz sequences
and tested them on all time points in the data from the 20Hz sequences.
We repeated this for the inverse (training on 20Hz and testing on 5Hz),
and averaged the resulting time-generalisation matrices (Kaiser et al.,
2016).

All steps in the decoding analysis were implemented in CoS-
MoMVPA (Oosterhof et al., 2016). For the categorical contrasts that
grouped more than one image, we used an
image-by-sequence-cross-validation scheme so that identical images
were not part of both training and test set (Carlson et al., 2013;
Grootswagers et al., 2017b). This was implemented by first splitting the
data into four sets, where the first set consisted of the first images from
each of the 50 object categories (i.e., cow-1, table-1 etc.), the second set
of the second images (i.e., cow-2, table-2 etc.), etc. One of these sets was
used as test data, and the other three as training data for the
leave-one-sequence out cross-validation, where all data from one
sequence was used as test data, and data from the remaining sequences
as training data. For each decoding contrast, this resulted in 160 (4
images by 40 sequences) cross-validation partitions. Where
image-by-sequence cross-validation was not possible (i.e., image-level
and target-distractor decoding), we used a leave-one-sequence-out
cross-validation scheme, where all epochs from one sequence were
used as test set, resulting in 40 cross-validation partitions. We used a
linear discriminant analysis (LDA) classifier (implemented in CoS-
MoMVPA) and report the mean cross-validated decoding accuracy.
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2.5. Representational Similarity Analysis

To study the emerging representational structure of our 200 stimuli,
we analysed our data using the Representational Similarity Analysis
(RSA) framework (Kriegeskorte and Kievit, 2013; Kriegeskorte et al.,
2008a,b), which allows comparing models of object representations. The
Fig. 2. Candidate models used in the RSA. Top row: time-averaged neural RDMs for t
dissimilarity (here: decoding accuracy) between a pair of images. Second row: categ
similar than responses to stimuli for different categories. Third row: image properties
visual differences to the neural dissimilarities. Bottom row left: dissimilarities (1-corr
RDMs are the same as in Fig. 1. Bottom row right: model dissimilarities projected in
configuration so that the distance between points approximates their dissimilarities.
category-object, and between the silhouette model and all three categorical models.
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decoding results at the image level were organised into a 200 by 200
neural representational dissimilarity matrix (RDM), which for each pair
of images, contained the mean cross-validated decoding accuracy (im-
ages that evoke more dissimilar neural responses are better decodable).
One neural RDMwas created for each subject, and each time point (group
mean RDM at 100–400ms shown in Fig. 2, top row). We compared the
he 5Hz and 20Hz conditions. Each point in the 200 by 200 matrix represents the
orical models predict that responses to stimuli from the same category are more
entered the regression as control models to quantify the contribution of low-level
elation) between all candidate models. The order of the images in the 200� 200
a 2-dimensional space using classical multi-dimensional scaling, which returns a
Annotated are the dissimilarities (1-correlation) between category-animacy and
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neural RDMs to six candidate models; first, we created one model for
each of the three categorical levels, grouping images from the same
category (Fig. 2, second row). We also used three low-level image feature
control models (Fig. 2, third row), which were created by correlating the
vectorised experimental images. The models consisted of an image
silhouette similarity model, which is based on the binary alpha layer of
the stimuli and is a good predictor of differences in brain responses
(Carlson et al., 2011; Teichmann et al., 2018; Wardle et al., 2016)), a
model based on the CIELAB-colour values of the stimuli, and a model
based on the difference in luminance of the stimuli. Fig. 2 shows the
candidate models and the correlation distance between each of the
candidate models (bottom row). The small correlations between the
categorical models and the low-level feature models suggests that there
was little overlap between the low-level features and categorical orga-
nisations in the stimulus set. To quantify the unique contributions of all
models to the neural dissimilarities, we modelled the time-varying neural
RDMs of each subject as a linear combination of the candidate models
using a GLM (Oosterhof et al., 2016; Proklova et al., 2017); for each time
point, the lower triangles of the neural RDM and candidate models were
vectorised, and regression coefficients were obtained for all candidate
models. This resulted in one beta estimate for each model, subject, and
time point. We then analysed at the group level the mean beta estimates
across subjects. To visualise the dynamic representational structure, at
each point in time, we created a two-dimensional embedding of all 200
images. To compute the two-dimensional embedding, we applied t-SNE
(Maaten and Hinton, 2008) to the mean neural RDMs. This approach
finds an embedding of the multi-dimensional space in a two-dimensional
representation so that the distances between points reflect their multi-
dimensional pattern dissimilarities as best as possible.
2.6. Statistical inference

In this study, we used Bayes factors (Dienes, 2011; Jeffreys, 1998;
Rouder et al., 2009; Wagenmakers, 2007) to determine the evidence for
the null and alternative hypotheses. For the alternative hypothesis of
above-chance decoding or correlation, a uniform prior was used ranging
from the maximum value observed during the baseline (before stimulus
onset) up to 1 (e.g., 100% decoding). For testing a non-zero difference
between decoding accuracies, a uniform prior was used ranging from the
maximum absolute difference observed during the baseline up to 50%
Fig. 3. Behavioural results of target detection performance. (A) 5Hz sequences. (B) 2
each participant separately for boat target sequences and star target sequences. Right
1 from the correct answer) accuracy for each participant. Bayes Factors (BF) compa
x-axis.
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(0.5). We then calculated the Bayes factor (BF) which is the probability of
the data under the alternative hypothesis relative to the null hypothesis.
We thresholded BF> 3 and BF> 10 as substantial and strong evidence
for the alternative hypothesis, and BF< 1/3 and BF< 1/10 for sub-
stantial/strong evidence in favour of the null hypothesis (Jeffreys, 1998;
Wetzels et al., 2011). BF that lie between 1/3 and 3 indicate insufficient
evidence for either hypothesis.

3. Results

We examined the representational dynamics of 200 different visual
objects (Fig. 1A), presented in 5Hz and 20Hz sequences (Fig. 1B) using
EEG. During the sequences, participants detected targets (boats or stars).
3.1. The effect of target type and target selection

Participants were generally above chance (25%) at detecting targets
(boats or stars) in the 5Hz and 20Hz sequences (Fig. 3A and B). There was
no difference in performance between the boat and star conditions (all
BF< 1/3). On incorrect trials, responses often differed no more than one
from the correct answer (Fig. 3, right columns). This indicates that in
general, participants missed at most one target when they responded
incorrectly.

The temporal dynamics of target selection were revealed by decoding
targets from non-targets. The time-varying mean target-distractor
decoding accuracy was computed separately for boat sequences and
star sequences (Fig. 4). Target-distractor decoding performance peaked
around 67% in the 5Hz condition (Fig. 4A), and around 60% in the 20Hz
condition (Fig. 4B). For both presentation rates, peak decoding perfor-
mance was around 500ms. In both conditions, decoding for star targets
was above chance earlier than for boats, which suggests that stars targets
were easier to distinguish overall. Decoding performance remained
above chance for over 1000ms in the 5Hz sequences, and for approxi-
mately 800ms in the 20Hz sequences.

The temporal generalisation approach revealed target selection was
very similar between the 5Hz and 20Hz sequences. For both boat and star
target sequences, the onset of target decoding occurred around the same
time, and cross-decoding was most evident along the diagonal, suggest-
ing that target selection processes occurred at the same latencies
regardless of the sequence speed and image duration (Fig. 4c-d).
0Hz sequences. Left columns show the mean proportion of correct responses for
columns show the mean approximately-correct (i.e., response differed by at most
ring mean accuracies between the boat and star sequences are listed above the



Fig. 4. Decoding target versus distractor. For each target, a distractor was randomly selected from the same sequence, and classifiers were trained on target versus
distractor. A-B) Plots show the mean leave-one-sequence-out cross-validated accuracy for the 5Hz condition (A), and the 20Hz condition (B). Shaded areas show the
standard error of the mean across participants. Results are shown separately for boat target sequences and star target sequences. Dots below plots indicate thresholded
Bayes Factors (BF, see inset) for the boat (top row) and star (middle row) sequences compared to chance and for the difference between boat and star sequences
(bottom row). Annotated below the x-axis are the time points where the BF first exceeded 3 (for at least 2 consecutive time points). C-D) temporal generalisation
results. The left columns show classifier generalisation performance for the boat (C) and star (D) between the different presentation durations. The right columns show
corresponding thresholded Bayes Factors (yellow indicating above chance, and blue indicating below chance decoding). Higher than chance generalisation (yellow) on
the diagonal indicates similar temporal dynamics of processing in the 5Hz condition as the 20Hz condition.
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3.2. Decoding categorical contrasts of 200 stimuli

In the 5Hz condition, we observed above chance decoding for all
categorical levels (Fig. 5, blue lines), starting at 100ms after stimulus
onset for the categorical levels, and earlier (80ms) at the image level.
This difference may be caused by decodable low-level visual features at
the image level, which are controlled for by the exemplar-cross-
673
validation approach at the categorical levels (Carlson et al., 2013;
Grootswagers et al., 2017b). These decoding onsets correspond well to
the existing decoding literature, which has reported onsets for various
categories between 80ms and 100ms (Carlson et al., 2013; Cichy et al.,
2014; Kaneshiro et al., 2015). For the animacy level, the results showed
three distinct peaks in decoding performance (150, 200ms and 400ms).
In contrast, peak decoding happened around 200ms for category and



Fig. 5. Mean decoding accuracy for 5Hz and 20Hz conditions.
A) Decoding animacy (animate versus inanimate). B) Mean
pairwise decoding for the 10 categories (e.g., mammal, tools).
C) Mean pairwise decoding for 50 object categories (e.g., dog,
giraffe). D) Mean pairwise decoding for all 200 images.
Shaded areas depict standard error of the mean across sub-
jects. Dots below plots indicate thresholded Bayes Factors (BF,
see inset) for the 5Hz condition compared to chance (top
rows), 20Hz condition compared to chance (middle rows) and
for the difference between the 5Hz and 20Hz results (bottom
rows). The time points where the BF first exceeded 3 are an-
notated below the x-axis.
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object decoding and 130ms for image decoding. For all categorical
levels, above-chance decoding was sustained until around 500ms. Note
that at 500ms, there were already two new stimuli presented.

In the 20Hz condition (Fig. 5, green lines), we again observed above-
chance decoding for all levels. Notably, the onset of decoding was around
the same time point as in the 5Hz condition and subsequent decoding
followed the same trajectory but diverged later in the time series (indi-
cated by the bottom row of Bayes factors). The overall peak decoding
performance was lower, and the peak decoding time points appeared
earlier in the time series. Decoding for all comparisons except object
decoding remained above chance until around 300ms, which included
five subsequent stimulus presentations. There was no difference between
674
distractor processing on boat target and star target trials (BF< 1/10) for
all categorical contrasts.

Temporal generalisation analyses were performed to compare cate-
gorical decoding between the 5Hz and 20Hz conditions. For all three
categorical levels, we observed similar onsets between presentation du-
rations, but longer subsequent processing for the 5Hz condition relative
to the 20Hz condition (Fig. 6). Notably, for the animacy distinction there
was no evidence of generalisation between the 5Hz sequence around
500–600ms and the 20Hz sequence at any time point, despite a differ-
ence between decoding accuracies during this time period (as was seen in
Fig. 5). This suggests that a high-level animacy-related process was
present in the 5Hz condition but absent in the 20Hz condition. The



Fig. 6. Temporal generalisation results. A)
Decoding animacy (animate versus inani-
mate; chance¼ 50%). B) Decoding 10-way
category (e.g., mammal, tools;
chance¼ 10%). C) Decoding 50-way object
categories (e.g., dog, giraffe; chance¼ 2%).
The left columns show classifier generalisa-
tion performance for the three categorical
levels between the different presentation
durations. The right columns show corre-
sponding thresholded Bayes Factors (Yellow
indicating above chance, and blue indicating
below chance decoding). Higher than chance
generalisation (yellow) above the diagonal
indicates slower processing in the 5Hz con-
dition relative to the 20Hz condition.
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temporal generalisation analyses also showed consistent below chance
generalisation between the early and late responses. This phenomenon is
consistent with previous decoding studies on visual object categorisation
(Carlson et al., 2013; Cichy et al., 2014), and has been suggested to be
caused by the stimulus offset, or by an adaptation or inhibition signal
(Carlson et al., 2011, 2013; Contini et al., 2017).

3.3. Representational dynamics of 200 stimuli

Emerging representational structures of the 200 stimuli were studied
in the Representational Similarity Analysis (RSA) framework (Krie-
geskorte and Kievit, 2013; Kriegeskorte et al., 2008a,b). A neural
representational dissimilarity matrix (neural RDM) was created for each
subject, and each time point containing the dissimilarities between all
200 stimuli. Neural RDMs were modelled as a linear combination of six
candidate models; low-level image silhouette, colour and luminance
models, and one model for each of the three categorical levels. We then
analysed the mean beta estimates of the candidate models (Fig. 7). For
both presentation rates, the silhouette model captured the early response
in the data, followed by the colour, object, and category models. These
results quantify the contribution of low-level visual features to neural
dissimilarities. While low-level features were represented early in the
signal, the categorical models also explained unique variance in the data.
In the 5Hz condition, the animacy model emerged last, while in the 20Hz
sequences the animacy model did not explain variance in the neural RDM
at any time point. To visualise and qualitatively explore the dynamic
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representational structure, we created RDMs and a two-dimensional
embedding of all 200 images from 5Hz to 20Hz sequences. Fig. 8
shows these embeddings for 5 Hz at two time points, 200 and 400ms,
which are the time points where the category and animacy models were
represented strongest in the signal (as observed in Fig. 7). In these em-
beddings, the distance between images reflects their mean dissimilarity
across subjects (Fig. 8; see supplementary material for neural RDMs and
two-dimensional embedding for 5Hz and 20 Hz at all time points).

4. Discussion

In the current study, we characterised the representational dynamics
of a large number of images in fast presentation sequences. Previous
work has used MEG and EEG decoding to investigate representations of
much smaller image sets using slow image presentation paradigms
(Carlson et al., 2013; Cichy et al., 2014; Contini et al., 2017; Grootsw-
agers et al., 2017a,b; Kaiser et al., 2016; Kaneshiro et al., 2015; Proklova
et al., 2017; Ritchie et al., 2015; Simanova et al., 2010); here we extend
this work by looking at the representations of 200 objects during RSVP
using standard 64-channel EEG. For 5Hz and 20Hz sequences, all 200
images could be decoded at four different categorical levels. Further-
more, neural responses to targets were distinct from those to distractor
stimuli. Above-chance decoding outlasted subsequent image pre-
sentations, supporting the idea that multiple object representations can
co-exist in the visual system at different stages of processing (Marti and
Dehaene, 2017). In keeping with the known hierarchical nature of the



Fig. 7. RSA model tests. A) 5Hz categorical models. B) 20Hz categorical models. C) 5Hz image feature control models. D) 20Hz image feature control models. The
neural RDMs of each subject were modelled as linear combination of six candidate models: three categorical models and three image feature models. Lines show
estimated betas for the models. Shaded areas reflect the standard error across subjects. Dots below plots indicate the thresholded Bayes Factors (BF, see inset) for each
beta estimate. Annotated below the x-axis are the time points where the BF first exceeded 3 (for at least 2 consecutive time points).
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visual system, RSA model testing suggested neural responses relied on
low-level visual features early in the time series, and subsequent pro-
cessing was associated with increasing category abstraction (Carlson
et al., 2013; Cichy et al., 2014). Overall, we show the unprecedented
ability of the human brain to process images when pushing the limits of
temporal perception.

Target decoding results revealed that neural responses to distractors
diverged from star target responses much earlier than boat targets. This
supports our initial hypothesis that star targets would be distinct from
other images based on low-level visual features, unlike boat targets. The
behavioural results, however, revealed target detection did not differ
across boat and star trials, indicating that there was no “pop-out” effect of
stars. This is despite anecdotal reports that participants found the star
targets easier. Target versus distractor decoding for boats and stars
peaked at 500ms, supporting previous evidence that high level cognitive
processes mediate temporal selection (Marti and Dehaene, 2017; Sergent
et al., 2005). These results suggest that distinguishable low-level features
do not help with target detection in RSVP sequences, at least in the
current design with such high variation in distractor images.

Target processing did not differ markedly across the different exper-
imental durations. In both the 5Hz and 20Hz sequences, targets could be
distinguished from distractors for a long period of time, but this was
exaggerated for the 5Hz condition, where decoding was above chance for
over 1000ms, compared to 800ms in the 20Hz condition. Decoding was
also higher in the 5Hz condition relative to the 20Hz condition, but the
dynamics of temporal selection processes were largely the same. The time
of peak decoding (500ms) was the same for both conditions, and time
generalisation analyses revealed neural processes occurred at the same
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latency in both conditions. This suggests that processes of target selection
are largely the same regardless of image presentation duration and fre-
quency. Notably, target processing was much more prolonged than cat-
egorical decoding for distractors, again indicative of higher level
cognitive processes at play for target detection. Note that the current
experimental design did not allow us to see which targets in the stream
were missed, but effects are likely to be amplified for correctly detected
targets. Indeed, Marti & Dehaene (2017) found that late responses were
sustained for reported stimuli. Taken together, our results show that late
target-related responses do not differ dramatically in faster sequences
relative to slower sequences.

Neural responses to the 200 non-task-relevant (distractor) objects are
indicative of fairly automatic early visual processing and divergence at
later processing stages according to image duration. For all contrasts,
image presentation duration and cognitive task set did not influence the
earliest processing stages. When looking at decoding for the durations
separately, onsets seemed to be earlier for the 5Hz than 20Hz conditions,
in accordance with recent work showing earlier onsets for longer image
durations (Mohsenzadeh et al., 2018). It is important to note, however,
that higher signal strengths can also lead to earlier decoding onsets
(Grootswagers et al., 2017a), thus differences between onsets must be
interpreted with caution in the context of larger peak decoding.
Crucially, here Bayes factors revealed evidence for no difference in
decoding at these early time points between the 5Hz and 20Hz image
sequences (<150ms from image onset). Results from the temporal
generalisation approach supported this view, by showing that initial
processing stages occurred at the same time for the 5Hz and 20Hz se-
quences, as seen by the above-chance decoding on the diagonal in Fig. 5.



Fig. 8. Representational structure of images in 5Hz sequences at two time points. A) Neural dissimilarity matrix at 200ms. B) Neural RDM at 400ms. The RSA model
testing (Fig. 7) showed that the structure at 200ms best resembles the category model and structure at 400ms best resembles the animacy model. C) Embedding of
stimuli in a two-dimensional space reflects their pairwise distances at 200ms. D) Embedding at 400ms. Stimuli that are shown further apart in this representation
evoked more dissimilar neural responses. In the bottom left corner of each plot, the same arrangement is shown, with images represented by dots coloured according to
the 10 categories (see inset).
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Finally, for the three categorical levels (animacy, category and object),
Bayesian analyses revealed distractor processing did not differ between
boat and star trials. These results suggest that initial neural responses to
all visual stimuli were similar regardless of their presentation duration.

Previous work has shown that, using MEG, it is possible to use
decoding to investigate target-related processes in RSVP streams (Marti
and Dehaene, 2017; Mohsenzadeh et al., 2018a). For example, Moh-
senzadeh et al. used 306-channel MEG to decode 12 target faces from 12
non-target objects in RSVP streams, analysing only the middle image in
the stream to study feedforward versus feedback processes. As part of a
study investigating temporal selection mechanisms, Marti & Dehaene
showed that a classifier trained on 5 categories using a separate localiser
could generalise to distractor items around the target. In contrast to these
studies, here we decoded object representations using a 64-channel EEG,
a much larger set of images (200) in a sequence, and no separate local-
iser. The results from our approach also corroborated previous work
decoding the representations of objects presented in isolation (Carlson
et al., 2013; Cichy et al., 2014; Kaneshiro et al., 2015). Our results
showed that decoding objects in RSVP streams have similar decoding
onsets as previously reported (Carlson et al., 2013; Cichy et al., 2014;
Kaneshiro et al., 2015). This validates the RSVP approach as a method to
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study representational dynamics. We further found that the 20Hz con-
dition limited visual processing compared to 5Hz, which shows that this
paradigm can be utilised to bias the extent of visual processing at
different image presentation rates. In sum, our results confirm that long
ISIs are not necessary for multivariate analyses. This thus allows ana-
lysing all presentations in an RSVP sequence, rather than limiting the
scope to selected presentations (e.g., targets) in the streams. Here we
have demonstrated the potential by studying the representational dy-
namics of 200 objects in one short EEG session. Future work can adopt
similar approaches to investigate for example prediction, priming,
masking, or attentional effects on the processing of distractors in RSVP
sequences.

Despite similar early processing stages, later processing diverged ac-
cording to image presentation duration. Representations during 5Hz se-
quences were stronger and lasted longer than those during 20Hz
sequences, and temporal generalisation analyses showed that processes
were prolonged for the 5Hz relative to the 20Hz condition. It could be
that longer image durations allow more consolidation, potentially due to
recurrent processing. It is also possible that longer durations allow time
to reach some kind of threshold, which triggers further processing. Note
that image duration and ISI are conflated in this design, so we cannot
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conclude whether or if stronger and longer processing occurs due to
longer image presentation or due to delayed masking from the next
stimulus. Future work can build on this approach to investigate the
temporal limits of visual perception.

The RSA regression analyses provided insight into the differences in
processing between the 5Hz and 20Hz sequences. The category decoding
analyses were performed using a leave-one-exemplar out cross-validation
approach, which means that the classifier always had to generalise to
new images, reducing the likelihood that low-level features would drive
the results. However, there can still be consistent low-level features be-
tween the categories that can contribute to classification. The regression
RSA technique aimed to dissociate the unique contributions of each of
the categorical and low-level featural models. In accordance with the
decoding results, processes early in the time series (~100–150ms) were
mostly explained by the low-level silhouette model and then the colour
model for the 5Hz and 20Hz conditions (Carlson et al., 2011). Subse-
quent processing, however, elucidated the differential contributions of
the different categorical contrasts, and how this varied for the different
image durations. For the 5Hz condition, the category model appeared to
have the largest unique contribution around 200ms, and the animacy
model accounted for the most variance at about 400ms, indicating that
increasing category abstraction occurred at higher levels of visual pro-
cessing (Carlson et al., 2013; Cichy et al., 2014; Contini et al., 2017;
Kriegeskorte et al., 2008a,b). In contrast, the animacy model had no
unique contribution to the signal for the in 20Hz sequences. The time
course of the animacy model regression for the 5Hz condition (>350ms)
suggests that the animate-inanimate difference might exclusively ac-
count for the prolonged decoding in the 5Hz condition relative to the
20Hz condition. This could imply that a high-level animacy effect re-
quires sufficient evidence accumulation to proceed, which does not
happen at 20Hz presentation rates. The finding that longer image pre-
sentations allow higher level processing is supported by steady-state vi-
sual evoked potential (SSVEP) work showing that images presented at
faster frequencies are biased towards earlier visual processes in contrast
to slower frequencies which allow higher level processing (Collins et al.,
2018).

When qualitatively inspecting the visualisation of the representa-
tional structure (Fig. 8), we noticed a clear categorical organisation in the
5Hz presentation condition. At 200ms in the response, the structure
reflected mostly natural versus artificial, with plants, fruits and animals
all clustering on one side (Fig. 8C). In line with the decoding and RSA
results, the structure at 400ms showed a clear animate – inanimate
distinction (Fig. 8D) (Caramazza and Shelton, 1998), which is commonly
observed in neural responses in the ventral temporal cortex (Cichy et al.,
2014; Konkle and Caramazza, 2013; Kriegeskorte et al., 2008a,b; Pro-
klova et al., 2016) and has been shown to match human categorisation
behaviour well (Bracci and Op de Beeck, 2016; Carlson et al., 2014;
Grootswagers et al., 2018; Mur et al., 2013; Ritchie et al., 2015). In the
animate – inanimate organisation primates were located at the far end of
the animate side, which may reflect a continuum of biological classes in
the brain (Connolly et al., 2012; Sha et al., 2015) or typicality
(Grootswagers et al., 2017a; Iordan et al., 2016; Posner and Keele, 1968;
Rosch, 1973; Rosch and Mervis, 1975). No animacy structure was
apparent for the 20Hz condition (as evidenced by the RSA results), but
rather individual categorical clusters seem to have emerged (in line with
the RSA results), such as human faces, and, later, humans and primates as
a category (see Supplementary Material). Interestingly, in these visual-
isations gloves were grouped with humans and primates, which could
mean they were perceived as body parts, rather than inanimate objects.
While these visualisations allow for such qualitative speculation, the
quantitive RSA modelling results highlight the level of detail in the
representation structure that can be obtained using EEG decoding and
fast presentation rates. Here, we used a common 64-channel EEG, but
future work can use this approach in combination with high-density EEG
or other neuroimaging methods that are sensitive to finer spatial pat-
terns, such as MEG.
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One remaining question is the role that low-level image statistics play
in our results. The RSA approach showed that low-level control models
explained early neural responses to the stimuli. The current stimulus set
consisted of segmented coloured objects, which were not matched on
low-level features such as colour, orientation, shape, and size. Future
work can build on the current paradigm using a stimulus set that for
example contains orthogonal shape and category dimensions (Bracci
et al., 2017; Bracci and Op de Beeck, 2016; Proklova et al., 2017, 2016),
or test the decodability of these features using for example texture stimuli
with similar features (Long et al., 2016; Long et al., 2017). Such exten-
sions can help unravel the relationship between object features and
categories, and increase our understanding of how this inherent rela-
tionship guides categorical abstraction in the visual system.

In conclusion, our results show that we can study the representational
dynamics of more than 200 objects in one short EEG session. We were
able to characterise the time courses of multiple categorical contrasts
from the same images, indicating that all objects reached abstract cate-
gorical stages of perception despite being presented for short durations.
Here, we took advantage of the high temporal resolution of both the
human visual system and common neuroimaging techniques such as EEG
and MEG. These results confirm that long ISIs are not necessary for
multivariate analyses, as they do not require a resting baseline as in ERP
analyses. Thus, futureMVPA studies on visual perception should consider
using fast presentation rates as this allows for a substantial increase of the
number of presentations, stimuli, or experimental conditions. This offers
unprecedented potential for studying the temporal dynamics of visual
perception and attention.
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