
NeuroImage 202 (2019) 116083
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
Untangling featural and conceptual object representations

Tijl Grootswagers a,b,*, Amanda K. Robinson a,b, Sophia M. Shatek a, Thomas A. Carlson a

a School of Psychology, University of Sydney, Sydney, NSW, Australia
b Perception in Action Research Centre, Macquarie University, Sydney, NSW, Australia
A B S T R A C T

How are visual inputs transformed into conceptual representations by the human visual system? The contents of human perception, such as objects presented on a
visual display, can reliably be decoded from voxel activation patterns in fMRI, and in evoked sensor activations in MEG and EEG. A prevailing question is the extent to
which brain activation associated with object categories is due to statistical regularities of visual features within object categories. Here, we assessed the contribution
of mid-level features to conceptual category decoding using EEG and a novel fast periodic decoding paradigm. Our study used a stimulus set consisting of intact objects
from the animate (e.g., fish) and inanimate categories (e.g., chair) and scrambled versions of the same objects that were unrecognizable and preserved their visual
features (Long et al., 2018). By presenting the images at different periodic rates, we biased processing to different levels of the visual hierarchy. We found that
scrambled objects and their intact counterparts elicited similar patterns of activation, which could be used to decode the conceptual category (animate or inanimate),
even for the unrecognizable scrambled objects. Animacy decoding for the scrambled objects, however, was only possible at the slowest periodic presentation rate.
Animacy decoding for intact objects was faster, more robust, and could be achieved at faster presentation rates. Our results confirm that the mid-level visual features
preserved in the scrambled objects contribute to animacy decoding, but also demonstrate that the dynamics vary markedly for intact versus scrambled objects. Our
findings suggest a complex interplay between visual feature coding and categorical representations that is mediated by the visual system’s capacity to use image
features to resolve a recognisable object.
1. Introduction

How does the brain transform perceptual information into meaning-
ful concepts and categories? One key organisational principle of object
representations in the human ventral temporal cortex is animacy (Car-
amazza and Mahon, 2003; Caramazza and Shelton, 1998; Kiani et al.,
2007; Kriegeskorte et al., 2008; Mahon and Caramazza, 2011; Spelke
et al., 1995). Operationalised as objects that can move on their own
volition, animate objects evoke different activation patterns than inani-
mate objects in human brain activity patterns in fMRI (Cichy et al., 2014;
Connolly et al., 2012; Downing et al., 2001; Grootswagers et al., 2018;
Konkle and Caramazza, 2013; Kriegeskorte et al., 2008) and in MEG/EEG
(Carlson et al., 2013; Contini et al., 2017; Grootswagers et al., 2017;
Grootswagers et al., 2019; Kaneshiro et al., 2015; Ritchie et al., 2015). A
current theoretical debate concerns the degree to which categorical ob-
ject representations in ventral temporal cortex are due to systematic
featural differences within categories (Long et al., 2018; op de Beeck
et al., 2008; Proklova et al., 2016).

Recent work has focused on understanding the contribution of visual
features to the brain’s representation of categories, such as animacy. This
work has shown that a substantial proportion of animacy (de)coding in
ventral temporal cortex can be explained by low and mid-level visual
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features (e.g., texture and curvature) that are inherently associated with
animate versus inanimate objects (Andrews et al., 2015; Bracci and Op de
Beeck, 2016; Bracci et al., 2017; Bracci et al., 2019; Coggan et al., 2016;
Kaiser et al., 2016; Long et al., 2018; Proklova et al., 2016; Rice et al.,
2014; Ritchie, Bracci, & op de Beeck, in press; Watson et al., 2016). Long
et al. (2018) recently investigated how mid-level features contribute to
categorical representations using images of intact objects and scrambled
“texform” versions of the same objects. Crucially, the texform versions of
the objects were unrecognisable (at the individual image identity level)
but preserved mid-level features such as texture. Using fMRI, they found
the categories of animacy and size were similarly coded in the brain for
intact and texform versions of objects, thus demonstrating that such
patterns can arise without the explicit recognition of an object (Long
et al., 2018). In MEG and EEG, one study showed that animate and
inanimate objects cannot be differentiated when they are closely
matched for shape (Proklova et al., 2019). Other studies, however, have
found that object animacy decoding generalises to unseen exemplars
with different shapes (cf. Contini et al., 2017), suggesting animacy
decoding, in part, might be based on general conceptual representations.
Taken together, these results suggest that either there is some abstract
conceptual representation of animacy, or that objects within the animate
and inanimate categories share sufficient visual regularities to drive the
, Australia.
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categorical organisation of object representations in the brain.
In the current study, we tested the contribution of visual features to

the dynamics of emerging conceptual representations. We used a previ-
ously published stimulus set (Fig. 1) that was designed to test the
contribution of mid-level features to conceptual categories (animacy and
size) in the visual system (Long et al., 2018), which consisted of
luminance-matched real objects, and scrambled, “texform” versions of
the same objects that retain mid-level texture and form information
(Long et al., 2017; Long et al., 2018). We used EEG and a rapid-MVPA
paradigm (Grootswagers et al., 2019) to study the emergence of con-
ceptual information. Based on previous fMRI work (Long et al., 2018), we
predicted that texforms would evoke animacy-like patterns in the EEG
signal similar to intact objects. In addition, we hypothesized that
animacy-like patterns evoked by texforms may need more time to
develop. To test this, we presented the stimuli at varying rapid presen-
tation rates, as faster rates have been shown to limit the depth of stimulus
processing (Collins et al., 2018; Grootswagers et al., 2019; McKeeff et al.,
2007; Robinson et al., 2019). We found that EEG activation patterns of
Fig. 1. Stimuli and design. Stimuli were 120 objects categorizable as animate or i
versions of objects (presented first so that participants were not aware of their intact c
were used. All images were obtained from https://osf.io/69pbd/(Long et al., 2018)
sequence at 5 Hz, where stimuli were presented for 200m each. D. Example intact o
texforms were matched. Participants performed an orthogonal task where they resp
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texform versions of the objects were decodable, but that conceptual
categorical decoding of intact objects was more robust, and could be
achieved at faster presentation rates, which suggests that the visual
system needs less time to process the intact objects. Together, our results
provide evidence that visual features contribute to the representation of
conceptual object categories, but also show that higher level abstractions
cannot be fully explained by statistical regularities.

2. Methods

Stimuli, data, and analysis code are available online through
https://osf.io/sz9ve.
2.1. Participants

Participants were 20 volunteers (11 females, 9 males; mean age 24.6,
age range: 17–59) recruited from the University of Sydney in return for
payment or course credit. All participants reported normal or corrected-
nanimate, and as big or small. A. The first half of the experiment used texform
ounterparts). B. In the second half of the experiment, the original intact versions
. Stimuli were presented at four presentation frequencies. C. Example texform
bject sequence at 5 Hz. The sequence presentation orders for intact objects and
onded with a button press to the fixation dot turning red.

https://osf.io/sz9ve
https://osf.io/69pbd/
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to-normal vision. Two participants were left-handed. The study was
approved by the University of Sydney ethics committee and informed
consent in writing was obtained from all participants.

2.2. Stimuli and design

Stimuli were obtained from https://osf.io/69pbd (Long et al., 2018).
For a full description of the stimulus generation procedures, see Long
et al. (2018). The stimuli were 120 visual objects that were grouped in
four categories: big animals, small animals, big objects, and small objects.
This allowed for orthogonal animacy and size categorisation of the
stimuli. All stimuli were matched for average luminance. The stimuli
underwent a scrambling procedure (Long et al., 2018) to generate tex-
form versions of the same objects. All 240 stimuli, 120 intact objects, and
120 texform versions were used in this experiment (Fig. 1).

Following the procedure of Long et al., we presented participants with
texform versions of the stimuli in the first half of the experiment, and
with intact objects in the second half of the experiment. Participants were
all naïve to the experiment aims and were not informed about the rela-
tionship between the texforms and intact images. We used a rapid serial
visual processing paradigm to present the stimuli in fast succession
(Grootswagers et al., 2019). Stimuli were presented in random order in
streams at four presentation frequencies: 60 Hz, 30 Hz, 20 Hz, and 5 Hz,
always using a 100% duty cycle, following previous work that investi-
gated category decoding at fast presentation rates (Grootswagers et al.,
2019; Mohsenzadeh et al., 2018). All stimuli within a category (tex-
forms/objects) were presented in each stream (i.e., every stream con-
tained 120 images). Stimuli were presented at 6.8� 6.8 degrees of visual
angle on a grey background and were overlaid with a white fixation dot
of 0.2� diameter (Fig. X). During the experiment, participants responded
with a button press when the dot changed colour, which happened be-
tween 1 and 4 times during each stream, at random positions in the
stream. Each object was presented 30 times in each condition (intact and
texform), and at each presentation frequency. The experiment lasted
about 40min.

2.3. EEG recordings and preprocessing

Continuous EEG data were recorded from 64 electrodes arranged
according to the international standard 10–10 electrode placement sys-
tem (Oostenveld and Praamstra, 2001) using a BrainVision ActiChamp
system, digitized at a 1000-Hz sample rate and referenced online to Cz.
Preprocessing was performed offline using EEGlab (Delorme andMakeig,
2004). Data were filtered using a Hamming windowed FIR filter with
0.1 Hz highpass and 100Hz lowpass filters and were downsampled to
250 Hz. No further preprocessing steps were applied. All analyses were
performed on the channel voltages at each time point. Epochs were
created for each stimulus presentation ranging from [-100 to 1000m]
relative to stimulus onset.

2.4. Decoding analysis

We applied an MVPA decoding pipeline (Grootswagers et al., 2017)
applied to the EEG channel voltages. The decoding analyses were
implemented in CoSMoMVPA (Oosterhof et al., 2016). Regularised linear
discriminant analysis (LDA) classifiers were used in combination with a
sequence cross-validation approach to decode pairwise image identities
firstly between all pairs of texform images, and secondly between all
pairs of intact object images. For animacy decoding, an
exemplar-by-sequence cross-validation approach was used (Carlson
et al., 2013; Grootswagers et al., 2019). That is, a pair of animate and
inanimate images from one sequence was used as test data, and classifiers
were trained on the remaining images from the remaining sequences.
This was repeated for all animate-inanimate pairs and all sequences,
averaging the resulting cross-validated prediction accuracies. Real-world
size decoding used the same pipeline, with an exemplar-by-sequence
3

cross-validation procedure. To test for the similarity between texform
and object patterns, we performed the same analyses and cross-validation
designs described above, but we trained the classifiers on intact object
sequences and tested on the texform sequences, and vice versa. All ana-
lyses were repeated for each time point in the epochs, resulting in a
decoding accuracy over time for every presentation frequency, within
subject. The subject-averaged results for each frequency were analysed at
the group level.

2.5. Statistical inference

For each decoding analysis, we used Bayesian statistics to determine
the evidence for above chance decoding or non-zero differences between
texform and intact object decoding accuracies (Dienes, 2011, 2016;
Jeffreys, 1961; Rouder et al., 2009; Wagenmakers, 2007). For the alter-
native hypothesis of above-chance (50%) decoding or a non-zero dif-
ference, a JZS prior (Rouder et al., 2009) was set with a scale factor of
0.707 (Jeffreys, 1961; Rouder et al., 2009; Wetzels and Wagenmakers,
2012; Zellner and Siow, 1980). We then calculated the Bayes factor (BF)
which is the probability of the data under the alternative hypothesis
relative to the null hypothesis. We thresholded BF> 10 as evidence for
the alternative hypothesis, and BF< 1/3 as evidence in favour of the null
hypothesis (Jeffreys, 1961; Wetzels et al., 2011). In addition to the Bayes
factors, we computed p-values for decoding against chance, and the
differences between texform and intact object decoding accuracies. We
used a sign-swap permutation test (1000 iterations), and computed
threshold-free cluster enhancement (TFCE; Smith and Nichols, 2009)
values at each time point. To correct for multiple comparisons, the
maximum TFCE statistic across time for each permutation were selected
to form a corrected null-distribution (Maris and Oostenveld, 2007). We
then calculated p-values by comparing the observed TFCE values to the
corrected permutation distribution.

2.6. Exploratory channel-searchlight analysis

To obtain insights into the source of the difference between texform
and intact object decoding, we performed a channel by timepoint
searchlight. For all contrasts, we performed multiclass decoding instead
of all pairwise comparisons to reduce computation time. A leave-one-
sequence-out cross-validation approach was performed on local clusters
of channels. For each channel, a local cluster was constructed by taking
the closest four neighbouring channels, and the decoding analyses were
performed on the signal of just these channels. The decoding accuracies
were stored at the centre channel of the cluster. This resulted in a time by
channel map of decoding accuracy for each of the contrasts, and for each
subject, at each frequency. Here, we reported the results for the decoding
differences at 5 Hz and have added the other frequencies to the project’s
online repository.

3. Results

Participants (N¼ 20) viewed streams of texform stimuli and intact
objects (Fig. 1). The stimuli were presented in random order at four
presentation frequencies (60 Hz, 30 Hz, 20 Hz, 5 Hz) to target different
levels of visual processing (Grootswagers et al., 2019; Robinson et al.,
2019). The stimuli were developed by Long et al. (2017), and obtained
from https://osf.io/69pbd/(Long et al., 2017, 2018). Continuous EEG
was recorded during the streams and cut into overlapping epochs based
on the onset of each stimulus within the streams. The epoched data were
subjected to a multivariate decoding analysis, similar to previous work
that decoded individual images in fast presentation streams (Grootsw-
agers et al., 2019; Robinson et al., 2019).

To investigate how image representations differed between the tex-
form and intact versions, we obtained cross-validated classifier perfor-
mance between all pairwise texform images (Fig. 2A), and all pairwise
intact object images (Fig. 2B). The differences between texform and

https://osf.io/69pbd
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intact object decoding accuracies (Fig. 2C) showed evidence for no dif-
ference in the initial response (up to around 150m), but higher accu-
racies for intact objects after that. These differences were localised in
occipito-temporal areas (Fig. 2D). Both texforms and intact objects
were decodable from around 90m after stimulus onset at all presentation
frequencies, characteristic of early stages of visual processing (Carlson
et al., 2013; Cichy et al., 2014; Contini et al., 2017). Faster presentation
frequencies resulted in lower peak decoding and shorter decoding du-
rations, consistent with previous results showing that fast rates restrict
visual processing (Robinson et al., 2019). In general, the image-level
decoding results were similar between texforms and intact objects,
apart from the intact objects at 5 Hz, where a larger second peak was
observed that was not apparent for the texforms. To further investigate
the similarity between the underlying patterns, we performed
cross-decoding where we trained on intact object patterns and tested on
texform versions (Fig. 2E), and vice versa (Fig. 2F). The results of these
analyses showed that the evoked patterns are sufficiently similar to allow
for above-chance cross-decoding at all presentation frequencies.

To investigate to what extent the visual features preserved in the
texform versions of the objects drive categorical distinctions in activation
patterns, we trained classifiers on decoding animacy from the stimuli,
using an exemplar-by-sequence cross-validation approach to avoid
overfitting to individual images (Carlson et al., 2013; Grootswagers et al.,
2019). For texforms, above chance decoding of (featural) animacy was
observed between 300m and 400m after stimulus onset (Fig. 3A) for the
5 Hz presentation frequency but was not evident for the faster presen-
tation rates. Animacy decoding in intact object images, in contrast, was
above chance for 5 Hz, 20 Hz and 30 Hz (Fig. 3B). Onset of animacy
decoding was approximately 150m for the 5 Hz and 20Hz conditions,
and at 220m for the 30 Hz frequency. The differences between texform
and intact object animacy decoding accuracies (Fig. 3C) highlight the
substantial difference at 5 Hz, which an exploratory searchlight sug-
gested to be mainly located across occipito-temporal areas (Fig. 3D).
Cross-decoding (Fig. 3E&F) showed that part of the animacy pattern
generalised between intact objects and texforms. This result shows that
the shared visual features between texforms and intact objects contrib-
utes to, but do not wholly explain, the categorical representation of
animacy in the brain.

In the final analysis, we asked if the categorical representation of real-
world size emerges similarly for intact and texform versions of objects.
An exemplar-by-sequence cross-validation approach was used to decode
real world size (small versus large objects) for the texform and intact
objects. At none of the presentation rates was (featural) real-world size
decodable from the texform stimuli (Fig. 4A). Real world size of the intact
object images was decodable for 5 Hz and 20Hz frequencies (Fig. 4B).
The differences between texform and intact object size decoding accu-
racies are shown in Fig. 4C. Cross-decoding showed evidence for no
shared pattern of object size between intact objects and texforms (Fig. 4E
and F). Combined, the animacy and size decoding results show a
fundamental difference in how conceptual categories emerge for intact
objects and their scrambled counterparts.

4. Discussion

In this study, we assessed the contribution of mid-level features to
high level categorical object representations using a combination of fast
periodic visual processing streams and multivariate EEG decoding. We
used images of intact and texform versions of objects from a previously
published study (Long et al., 2018) and found that their neural repre-
sentations were similarly distinct at the image level. In contrast, the
decoding accuracies of the original categorical distinctions of animacy
and real-world size varied markedly across the texform and intact ver-
sions of the objects. The patterns of neural activity evoked by animate
and inanimate intact objects were decodable during a larger time period
than their texform versions, suggesting the temporal dynamics of
animacy-like patterns varied between intact and texform versions despite
4

their shared mid-level visual features. In addition, the animacy of intact
objects was decodable at 5 Hz, 20 Hz and 30 Hz, but texforms were only
decodable at 5 Hz. Higher level categorical brain regions exhibit larger
responses to slower presentation rates relative to faster rates (McKeeff
et al., 2007), and we previously found that slower object presentations
reached higher, more abstract levels of visual processing (Grootswagers
et al., 2019; Robinson et al., 2019). Thus, the absence of animacy
decoding for texform objects at faster presentation rates indicates that
higher level processing was required for the animate/inanimate
distinction in texform stimuli. Moreover, a clear double-peak structure
was observed for decoding the intact objects at 5 Hz, but not for the
texforms. This could reflect an additional conceptual processing step that
is unique to intact objects presented at a frequency that allows reaching
conceptual processing stages. We interpret these findings as evidence
that shared visual features between texforms and intact objects
contribute to, but do not wholly explain, the categorical organisation of
animacy in the brain.

Our results corroborate fMRI results using the same stimuli showing
that texforms and intact objects generated similar categorical represen-
tations along the visual hierarchy but that the recognizable images
generated stronger category responses (Long et al., 2018). The current
results further show a clear difference in the temporal dynamics of ani-
macy representations within the visual system for featural versus con-
ceptual object representations. At faster presentation rates, animacy
decoding was observed in intact objects but not in texforms, indicating
that intact objects promote categorical representations with limited
processing. It is important to note that the intact objects were shown only
in the second half of the experiment, which might have contributed to
better animacy decoding for intact objects. However, image-level results
were similar between texforms and intact objects, which suggests that the
experimental paradigm was not wholly responsible for the differences in
categorical-level decoding. Together, these results suggest that brain
responses to intact objects contain additional animacy category infor-
mation over and above the statistical visual regularities present in the
texforms.

The texform scrambling process was used to render images unrec-
ognisable at the individual image level, while maintaining featural image
statistics. Some low-level visual information may have been lost in the
scrambling process, such as shape and curvature information, which is a
strong cue for animacy (Levin et al., 2001; Schmidt et al., 2017;
Zachariou et al., 2018). In MEG and EEG decoding studies, classification
can be strongly driven by differences in object shape (Proklova et al.,
2019), and silhouette similarity is often a strong predictor of the simi-
larities between the earliest neural responses (Carlson et al., 2013;
Grootswagers et al., 2019; Teichmann et al., 2018; Wardle et al., 2016). It
is also important to note that while the texform images are not recog-
nisable at the individual level, they can still be categorised (e.g., for
animacy) above chance (Long et al., 2017). Human categorisation ac-
curacies on these images was found to be predicted by the amount of
curvilinear and rectilinear information in the image (Zachariou et al.,
2018). Yet, even if intermediate visual features are sufficient to classify
conceptual categories above-chance behaviourally, our results suggest
that this is only possible given sufficient processing time.

These findings support the notion that large-scale categorical orga-
nisations in the visual system are to some extent driven by mid-level
visual features. However, if concepts were decodable using only brain
responses to mid-level features, then this would predict above-chance
decoding of concepts also at faster frequencies for the texforms. This
was not the case in our results. Instead, we only observed animacy
decoding for the slowest (5 Hz) presentation frequency, which suggests
that the conceptual animacy category only emerges from mid-level fea-
tures after deeper processing. Thus, it could be the case that mid-level
feature coding in early visual areas does not allow for concept decod-
ing, but these features are “untangled” by higher visual areas into linearly
separable categorical organisations (DiCarlo and Cox, 2007). This would
mean that visual features could indeed drive the organisation in high



Fig. 2. Decoding texforms and intact objects. A. Decoding between all texform image pairs. B. Decoding between all intact object image pairs. C. Difference
between intact objects and texforms at each frequency. D. Channel searchlight maps at nine time points for the decoding differences at 5 Hz. E. Decoding texforms,
training the classifier on intact objects. F. Decoding intact objects, training on texforms. Different lines in each plot show decoding accuracy for different presentation
frequencies over time relative to stimulus onset, with shaded areas showing standard error across subjects (N¼ 20). Thresholded Bayes factors (BF) and p-values for
above-chance decoding or non-zero differences are displayed below the plot for each frequency.
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Fig. 3. Decoding animacy from texforms and intact objects. A. Decoding the animacy of the texform images. B. Decoding the animacy of the intact objects. C.
Difference between intact objects and texforms at each frequency. D. Channel searchlight maps at nine time points for the decoding differences at 5 Hz. E. Decoding
animacy from texforms, training the classifier on intact objects. F. Decoding animacy from intact objects, training on texforms. Different lines in each plot show
decoding accuracy for different presentation frequencies over time relative to stimulus onset, with shaded areas showing standard error across subjects (N¼ 20).
Thresholded Bayes factors (BF) and p-values for above-chance decoding or non-zero differences are displayed below the plot for each frequency.
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Fig. 4. Size was only decodable from intact objects. A. Decoding the real-world size of the texform images. B. Decoding the real-world size of the intact objects. C.
Difference between intact objects and texforms at each frequency. D. Channel searchlight maps at nine time points for the decoding differences at 5 Hz. E. Decoding
size from texforms, training the classifier on intact objects. F. Decoding size from intact objects, training on texforms. Different lines in each plot show decoding
accuracy for different presentation frequencies over time relative to stimulus onset, with shaded areas showing standard error across subjects (N¼ 20). Thresholded
Bayes factors (BF) and p-values for above-chance decoding or non-zero differences are displayed below the plot for each frequency.
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level areas, but only given sufficient processing time for such untangling
processes to complete. Furthermore, the speed of processing or infor-
mation transfer to these higher visual areas could be modulated by the
amount of evidence that supports the successful recognition of an object.
For example, the intact objects have a well-defined outline that separates
the object from the background, while the edges of the texforms are more
blurred. This potentially could disrupt segmentation processes which in
turn delays the amount of time it takes for information to reach higher
level recognition stages. The results of this study therefore suggest a
complex interplay between early and late stages of processing that ulti-
mately manifests in more abstract categorical representations.

A limitation of the current study is that the animacy and size category
boundaries of the stimulus set also define four subcategories, for
example, most small objects are tools, and most big animals are mam-
mals. Therefore, the results could be driven by these subcategories,
rather than overall conceptual animacy and size organisations. Future
work could explore this possibility, using stimulus sets that in addition
match the subcategories within animacy and size categories. In addition,
while it is important to disentangle perceptual features from conceptual
representations, the two are inherently intermingled. Categorical orga-
nisations, such as animacy, are strongly represented partly because they
share perceptual characteristics, which makes them easier to discrimi-
nate. Indeed, inanimate stimuli that share perceptual features with
animate items evoke brain responses that are similar to other animate
stimuli (Bracci et al., 2019). On the other hand, neural responses to
animate stimuli that share characteristics with inanimate objects (e.g., a
starfish) are more confusable with inanimate stimuli (Grootswagers
et al., 2017). Moreover, when stimuli are closely matched in shape, the
activation patterns can become indistinguishable (Proklova et al., 2016,
2019). Together, these examples could be taken to suggest that the di-
chotomy of animacy should be revised to more closely reflect, for
example, a continuous account of perceptual and conceptual animal
typicality (Connolly et al., 2012; Contini et al., 2019; Grootswagers et al.,
2017; Iordan et al., 2016; Sha et al., 2015; Thorat et al., 2019).

In conclusion, we found that animacy was decodable from texform
versions of objects, but that animacy of intact objects was more strongly
decodable, and at faster presentation frequencies. Information contained
in the texform versions of the objects thus not fully account for the
distinct patterns of neural responses evoked by conceptual object cate-
gories. These findings suggest that complex interactions between lower
and higher levels of visual processing mediate the representations of
category, which has important implications for disentangling perceptual
and conceptual representations in the human brain.

Acknowledgements

This research was supported by an Australian Research Council
Future Fellowship (FT120100816) and an Australian Research Council
Discovery project (DP160101300) awarded to T.A.C. The authors
acknowledge the University of Sydney HPC service for providing High
Performance Computing resources. The authors declare no competing
financial interests.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2019.116083.

References

Andrews, T.J., Watson, D.M., Rice, G.E., Hartley, T., 2015. Low-level properties of natural
images predict topographic patterns of neural response in the ventral visual pathway.
J. Vis. 15 (7), 3–3. https://doi.org/10.1167/15.7.3.

Bracci, S., Op de Beeck, H.P., 2016. Dissociations and associations between shape and
category representations in the two visual pathways. J. Neurosci. 36 (2), 432–444.
https://doi.org/10.1523/JNEUROSCI.2314-15.2016.
8

Bracci, S., Ritchie, J.B., de Beeck, H.O., 2017. On the partnership between neural
representations of object categories and visual features in the ventral visual pathway.
Neuropsychologia 105, 153–164. https://doi.org/10.1016/j.neuropsychologia.20
17.06.010.

Bracci, S., Ritchie, J.B., Kalfas, I., Op de Beeck, H., 2019. The ventral visual pathway
represents animal appearance over animacy, unlike human behavior and deep neural
networks. J. Neurosci. 1714–1718. https://doi.org/10.1523/JNEUROSCI.1714-1
8.2019.

Caramazza, A., Mahon, B.Z., 2003. The organization of conceptual knowledge: the
evidence from category-specific semantic deficits. Trends Cogn. Sci. 7 (8), 354–361.
https://doi.org/10.1016/S1364-6613(03)00159-1.

Caramazza, A., Shelton, J.R., 1998. Domain-Specific knowledge systems in the brain: the
animate-inanimate distinction. J. Cogn. Neurosci. 10 (1), 1–34. https://doi.org/1
0.1162/089892998563752.

Carlson, T.A., Tovar, D.A., Alink, A., Kriegeskorte, N., 2013. Representational dynamics of
object vision: the first 1000 ms. J. Vis. 13 (10), 1. https://doi.org/10.1167/13.10.1.

Cichy, R.M., Pantazis, D., Oliva, A., 2014. Resolving human object recognition in space
and time. Nat. Neurosci. 17 (3), 455–462. https://doi.org/10.1038/nn.3635.

Coggan, D.D., Liu, W., Baker, D.H., Andrews, T.J., 2016. Category-selective patterns of
neural response in the ventral visual pathway in the absence of categorical
information. Neuroimage 135, 107–114. https://doi.org/10.1016/j.neuroimage.20
16.04.060.

Collins, E., Robinson, A.K., Behrmann, M., 2018. Distinct neural processes for the
perception of familiar versus unfamiliar faces along the visual hierarchy revealed by
EEG. Neuroimage 181, 120–131. https://doi.org/10.1016/j.neuroimage.2018.06.0
80.

Connolly, A.C., Guntupalli, J.S., Gors, J., Hanke, M., Halchenko, Y.O., Wu, Y.-C., et al.,
2012. The representation of biological classes in the human brain. J. Neurosci. 32 (8),
2608–2618. https://doi.org/10.1523/JNEUROSCI.5547-11.2012.

Contini, E.W., Goddard, E., Grootswagers, T., Williams, M., Carlson, T., 2019.
A humanness dimension to visual object coding in the brain. BioRxiv. https://doi
.org/10.1101/648998.

Contini, E.W., Wardle, S.G., Carlson, T.A., 2017. Decoding the time-course of object
recognition in the human brain: from visual features to categorical decisions.
Neuropsychologia 105, 165–176. https://doi.org/10.1016/j.neuropsychologia.20
17.02.013.

Delorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis. J. Neurosci. Methods 134
(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009.

DiCarlo, J.J., Cox, D.D., 2007. Untangling invariant object recognition. Trends Cogn. Sci.
11 (8), 333–341. https://doi.org/10.1016/j.tics.2007.06.010.

Dienes, Z., 2011. Bayesian versus orthodox statistics: which side are you on? Perspect.
Psychol. Sci. 6 (3), 274–290. https://doi.org/10.1177/1745691611406920.

Dienes, Z., 2016. How Bayes factors change scientific practice. J. Math. Psychol. 72,
78–89. https://doi.org/10.1016/j.jmp.2015.10.003.

Downing, P.E., Jiang, Y., Shuman, M., Kanwisher, N., 2001. A cortical area selective for
visual processing of the human body. Science 293 (5539), 2470–2473. https://doi.o
rg/10.1126/science.1063414.

Grootswagers, T., Cichy, R.M., Carlson, T.A., 2018. Finding decodable information that
can be read out in behaviour. Neuroimage 179, 252–262. https://doi.org/10.1016/j.
neuroimage.2018.06.022.

Grootswagers, T., Ritchie, J.B., Wardle, S.G., Heathcote, A., Carlson, T.A., 2017a.
Asymmetric compression of representational space for object animacy categorization
under degraded viewing conditions. J. Cogn. Neurosci. 29 (12), 1995–2010. https://
doi.org/10.1162/jocn_a_01177.

Grootswagers, T., Robinson, A.K., Carlson, T.A., 2019. The representational dynamics of
visual objects in rapid serial visual processing streams. Neuroimage 188, 668–679.
https://doi.org/10.1016/j.neuroimage.2018.12.046.

Grootswagers, T., Wardle, S.G., Carlson, T.A., 2017b. Decoding dynamic brain patterns
from evoked responses: a tutorial on multivariate pattern analysis applied to time
series neuroimaging data. J. Cogn. Neurosci. 29 (4), 677–697. https://doi.org/10.11
62/jocn_a_01068.

Iordan, M.C., Greene, M.R., Beck, D.M., Fei-Fei, L., 2016. Typicality sharpens category
representations in object-selective cortex. Neuroimage 134, 170–179. https://doi.
org/10.1016/j.neuroimage.2016.04.012.

Jeffreys, H., 1961. Theory of Probability. Oxford University Press.
Kaiser, D., Azzalini, D.C., Peelen, M.V., 2016. Shape-independent object category

responses revealed by MEG and fMRI decoding. J. Neurophysiol. 115 (4),
2246–2250. https://doi.org/10.1152/jn.01074.2015.

Kaneshiro, B., Guimaraes, M.P., Kim, H.-S., Norcia, A.M., Suppes, P., 2015.
A representational similarity analysis of the dynamics of object processing using
single-trial EEG classification. PLoS One 10 (8), e0135697. https://doi.org/10.1371/j
ournal.pone.0135697.

Kiani, R., Esteky, H., Mirpour, K., Tanaka, K., 2007. Object category structure in response
patterns of neuronal population in monkey inferior temporal cortex. J. Neurophysiol.
97 (6), 4296–4309. https://doi.org/10.1152/jn.00024.2007.

Konkle, T., Caramazza, A., 2013. Tripartite organization of the ventral stream by animacy
and object size. J. Neurosci. 33 (25), 10235–10242. https://doi.org/10.1523/JNE
UROSCI.0983-13.2013.

Kriegeskorte, N., Mur, M., Ruff, D.A., Kiani, R., Bodurka, J., Esteky, H., et al., 2008.
Matching categorical object representations in inferior temporal cortex of man and
monkey. Neuron 60 (6), 1126–1141. https://doi.org/10.1016/j.neuron.2008.10.043.

Levin, D.T., Takarae, Y., Miner, A.G., Keil, F., 2001. Efficient visual search by category:
specifying the features that mark the difference between artifacts and animals in
preattentive vision. Percept. Psychophys. 63 (4), 676–697.

https://doi.org/10.1016/j.neuroimage.2019.116083
https://doi.org/10.1016/j.neuroimage.2019.116083
https://doi.org/10.1167/15.7.3
https://doi.org/10.1523/JNEUROSCI.2314-15.2016
https://doi.org/10.1016/j.neuropsychologia.2017.06.010
https://doi.org/10.1016/j.neuropsychologia.2017.06.010
https://doi.org/10.1523/JNEUROSCI.1714-18.2019
https://doi.org/10.1523/JNEUROSCI.1714-18.2019
https://doi.org/10.1016/S1364-6613(03)00159-1
https://doi.org/10.1162/089892998563752
https://doi.org/10.1162/089892998563752
https://doi.org/10.1167/13.10.1
https://doi.org/10.1038/nn.3635
https://doi.org/10.1016/j.neuroimage.2016.04.060
https://doi.org/10.1016/j.neuroimage.2016.04.060
https://doi.org/10.1016/j.neuroimage.2018.06.080
https://doi.org/10.1016/j.neuroimage.2018.06.080
https://doi.org/10.1523/JNEUROSCI.5547-11.2012
https://doi.org/10.1101/648998
https://doi.org/10.1101/648998
https://doi.org/10.1016/j.neuropsychologia.2017.02.013
https://doi.org/10.1016/j.neuropsychologia.2017.02.013
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.tics.2007.06.010
https://doi.org/10.1177/1745691611406920
https://doi.org/10.1016/j.jmp.2015.10.003
https://doi.org/10.1126/science.1063414
https://doi.org/10.1126/science.1063414
https://doi.org/10.1016/j.neuroimage.2018.06.022
https://doi.org/10.1016/j.neuroimage.2018.06.022
https://doi.org/10.1162/jocn_a_01177
https://doi.org/10.1162/jocn_a_01177
https://doi.org/10.1016/j.neuroimage.2018.12.046
https://doi.org/10.1162/jocn_a_01068
https://doi.org/10.1162/jocn_a_01068
https://doi.org/10.1016/j.neuroimage.2016.04.012
https://doi.org/10.1016/j.neuroimage.2016.04.012
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref24
https://doi.org/10.1152/jn.01074.2015
https://doi.org/10.1371/journal.pone.0135697
https://doi.org/10.1371/journal.pone.0135697
https://doi.org/10.1152/jn.00024.2007
https://doi.org/10.1523/JNEUROSCI.0983-13.2013
https://doi.org/10.1523/JNEUROSCI.0983-13.2013
https://doi.org/10.1016/j.neuron.2008.10.043
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref30
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref30
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref30
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref30


T. Grootswagers et al. NeuroImage 202 (2019) 116083
Long, B., St€ormer, V.S., Alvarez, G.A., 2017. Mid-level perceptual features contain early
cues to animacy. J. Vis. 17 (6), 20–20. https://doi.org/10.1167/17.6.20.

Long, B., Yu, C.-P., Konkle, T., 2018. Mid-level visual features underlie the high-level
categorical organization of the ventral stream. Proc. Natl. Acad. Sci. 201719616
https://doi.org/10.1073/pnas.1719616115.

Mahon, B.Z., Caramazza, A., 2011. What drives the organization of object knowledge in
the brain? Trends Cogn. Sci. 15 (3), 97–103. https://doi.org/10.1016/j.tics.2011.0
1.004.

Maris, E., Oostenveld, R., 2007. Nonparametric statistical testing of EEG- and MEG-data.
J. Neurosci. Methods 164 (1), 177–190. https://doi.org/10.1016/j.jneumeth.2007.0
3.024.

McKeeff, T.J., Remus, D.A., Tong, F., 2007. Temporal limitations in object processing
across the human ventral visual pathway. J. Neurophysiol. 98 (1), 382–393. https://
doi.org/10.1152/jn.00568.2006.

Mohsenzadeh, Y., Qin, S., Cichy, R.M., Pantazis, D., 2018. Ultra-Rapid serial visual
presentation reveals dynamics of feedforward and feedback processes in the ventral
visual pathway. ELife 7, e36329. https://doi.org/10.7554/eLife.36329.

Oostenveld, R., Praamstra, P., 2001. The five percent electrode system for high-resolution
EEG and ERP measurements. Clin. Neurophysiol. 112 (4), 713–719.
https://doi.org/10.1016/S1388-2457(00)00527-7.

Oosterhof, N.N., Connolly, A.C., Haxby, J.V., 2016. CoSMoMVPA: multi-modal
multivariate pattern analysis of neuroimaging data in matlab/GNU octave. Front.
Neuroinf. 10. https://doi.org/10.3389/fninf.2016.00027.

op de Beeck, H.P., Haushofer, J., Kanwisher, N.G., 2008. Interpreting fMRI data: maps,
modules and dimensions. Nat. Rev. Neurosci. 9 (2), 123–135. https://doi.org/10.103
8/nrn2314.

Proklova, D., Kaiser, D., Peelen, M.V., 2016. Disentangling representations of object shape
and object category in human visual cortex: the animate–inanimate distinction.
J. Cogn. Neurosci. 1–13. https://doi.org/10.1162/jocn_a_00924.

Proklova, D., Kaiser, D., Peelen, M.V., 2019. MEG sensor patterns reflect perceptual but
not categorical similarity of animate and inanimate objects. Neuroimage. https://doi.
org/10.1016/j.neuroimage.2019.03.028.

Rice, G.E., Watson, D.M., Hartley, T., Andrews, T.J., 2014. Low-level image properties of
visual objects predict patterns of neural response across category-selective regions of
the ventral visual pathway. J. Neurosci. 34 (26), 8837–8844. https://doi.org/10.1
523/JNEUROSCI.5265-13.2014.

Ritchie, J. B., Bracci, S., & op de Beeck, H. P. (in press). Avoiding illusory effects in
representational similarity analysis: what (not) to do with the diagonal. Neuroimage.
https://doi.org/10.1016/j.neuroimage.2016.12.079.

Ritchie, J.B., Tovar, D.A., Carlson, T.A., 2015. Emerging object representations in the
visual system predict reaction times for categorization. PLoS Comput. Biol. 11 (6),
e1004316. https://doi.org/10.1371/journal.pcbi.1004316.

Robinson, A.K., Grootswagers, T., Carlson, T.A., 2019. The influence of image masking on
object representations during rapid serial visual presentation. Neuroimage 197,
224–231. https://doi.org/10.1016/j.neuroimage.2019.04.050.
9

Rouder, J.N., Speckman, P.L., Sun, D., Morey, R.D., Iverson, G., 2009. Bayesian t tests for
accepting and rejecting the null hypothesis. Psychon. Bull. Rev. 16 (2), 225–237.

Schmidt, F., Hegele, M., Fleming, R.W., 2017. Perceiving animacy from shape. J. Vis. 17
(11), 10–10. https://doi.org/10.1167/17.11.10.

Sha, L., Haxby, J.V., Abdi, H., Guntupalli, J.S., Oosterhof, N.N., Halchenko, Y.O.,
Connolly, A.C., 2015. The animacy continuum in the human ventral vision pathway.
J. Cogn. Neurosci. 27 (4), 665–678. https://doi.org/10.1162/jocn_a_00733.

Smith, S.M., Nichols, T.E., 2009. Threshold-free cluster enhancement: addressing
problems of smoothing, threshold dependence and localisation in cluster inference.
Neuroimage 44 (1), 83–98. https://doi.org/10.1016/j.neuroimage.2008.03.061.

Spelke, E.S., Phillips, A., Woodward, A.L., 1995. Infants’ knowledge of object motion and
human action. In: Sperber, D., Premack, D., Premack, A.J. (Eds.), Causal Cognition: A
Multidisciplinary Debate. Clarendon Press/Oxford University Press, New York, NY,
US, pp. 44–78.

Teichmann, L., Grootswagers, T., Carlson, T., Rich, A.N., 2018. Decoding digits and dice
with magnetoencephalography: evidence for a shared representation of magnitude.
J. Cogn. Neurosci. 30 (7), 999–1010. https://doi.org/10.1162/jocn_a_01257.

Thorat, S., Proklova, D., Peelen, M.V., 2019. The Nature of the Animacy Organization in
Human Ventral Temporal Cortex. Retrieved from. https://arxiv.org/abs/1904.0
2866v1.

Wagenmakers, E.-J., 2007. A practical solution to the pervasive problems of p values.
Psychon. Bull. Rev. 14 (5), 779–804. https://doi.org/10.3758/BF03194105.

Wardle, S.G., Kriegeskorte, N., Grootswagers, T., Khaligh-Razavi, S.-M., Carlson, T.A.,
2016. Perceptual similarity of visual patterns predicts dynamic neural activation
patterns measured with MEG. Neuroimage 132, 59–70. https://doi.org/10.1016/j.
neuroimage.2016.02.019.

Watson, D.M., Young, A.W., Andrews, T.J., 2016. Spatial properties of objects predict
patterns of neural response in the ventral visual pathway. Neuroimage 126, 173–183.
https://doi.org/10.1016/j.neuroimage.2015.11.043.

Wetzels, R., Matzke, D., Lee, M.D., Rouder, J.N., Iverson, G.J., Wagenmakers, E.-J., 2011.
Statistical evidence in experimental psychology: an empirical comparison using 855 t
tests. Perspect. Psychol. Sci. 6 (3), 291–298. https://doi.org/10.1177/1745691611
406923.

Wetzels, R., Wagenmakers, E.-J., 2012. A default Bayesian hypothesis test for correlations
and partial correlations. Psychon. Bull. Rev. 19 (6), 1057–1064. https://doi.org/10.
3758/s13423-012-0295-x.

Zachariou, V., Giacco, A.C.D., Ungerleider, L.G., Yue, X., 2018. Bottom-up processing of
curvilinear visual features is sufficient for animate/inanimate object categorization.
J. Vis. 18 (12), 3–3. https://doi.org/10.1167/18.12.3.

Zellner, A., Siow, A., 1980. Posterior odds ratios for selected regression hypotheses. In:
Bernardo, J.M., DeGroot, M.H., Lindley, D.V., Smith, A.F.M. (Eds.), Bayesian
Statistics: Proceedings of the First InternationalMeeting. University of Valencia Press,
Valencia, pp. 585–603.

https://doi.org/10.1167/17.6.20
https://doi.org/10.1073/pnas.1719616115
https://doi.org/10.1016/j.tics.2011.01.004
https://doi.org/10.1016/j.tics.2011.01.004
https://doi.org/10.1016/j.jneumeth.2007.03.024
https://doi.org/10.1016/j.jneumeth.2007.03.024
https://doi.org/10.1152/jn.00568.2006
https://doi.org/10.1152/jn.00568.2006
https://doi.org/10.7554/eLife.36329
https://doi.org/10.1016/S1388-2457(00)00527-7
https://doi.org/10.3389/fninf.2016.00027
https://doi.org/10.1038/nrn2314
https://doi.org/10.1038/nrn2314
https://doi.org/10.1162/jocn_a_00924
https://doi.org/10.1016/j.neuroimage.2019.03.028
https://doi.org/10.1016/j.neuroimage.2019.03.028
https://doi.org/10.1523/JNEUROSCI.5265-13.2014
https://doi.org/10.1523/JNEUROSCI.5265-13.2014
https://doi.org/10.1016/j.neuroimage.2016.12.079
https://doi.org/10.1371/journal.pcbi.1004316
https://doi.org/10.1016/j.neuroimage.2019.04.050
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref46
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref46
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref46
https://doi.org/10.1167/17.11.10
https://doi.org/10.1162/jocn_a_00733
https://doi.org/10.1016/j.neuroimage.2008.03.061
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref50
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref50
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref50
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref50
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref50
https://doi.org/10.1162/jocn_a_01257
https://arxiv.org/abs/1904.02866v1
https://arxiv.org/abs/1904.02866v1
https://doi.org/10.3758/BF03194105
https://doi.org/10.1016/j.neuroimage.2016.02.019
https://doi.org/10.1016/j.neuroimage.2016.02.019
https://doi.org/10.1016/j.neuroimage.2015.11.043
https://doi.org/10.1177/1745691611406923
https://doi.org/10.1177/1745691611406923
https://doi.org/10.3758/s13423-012-0295-x
https://doi.org/10.3758/s13423-012-0295-x
https://doi.org/10.1167/18.12.3
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref59
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref59
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref59
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref59
http://refhub.elsevier.com/S1053-8119(19)30671-8/sref59

	Untangling featural and conceptual object representations
	1. Introduction
	2. Methods
	2.1. Participants
	2.2. Stimuli and design
	2.3. EEG recordings and preprocessing
	2.4. Decoding analysis
	2.5. Statistical inference
	2.6. Exploratory channel-searchlight analysis

	3. Results
	4. Discussion
	Acknowledgements
	Appendix A. Supplementary data
	References


