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A B S T R A C T   

Mild traumatic brain injury (mTBI) can have detrimental impacts on the well-being of individuals, especially 
athletes with millions of injury cases reported per year. Nevertheless, the current assessment and diagnostic tools 
for mTBI have limitations due to their subjectivity and the lack of accessibility. This study aimed to evaluate the 
potential of machine learning algorithms in combination with steady-state visual evoked potentials (SSVEP) to 
provide mTBI diagnoses. The participants of this study included 36 athletes diagnosed with mTBI, aged 17–54, 
and 400 matched healthy controls without mTBI. Altogether, we extracted 51 SSVEP-based features from the 
collected observations and transformed them via principal component analysis (PCA) for feature reduction. 
Several machine learning algorithms were trained and validated using the transformed features for further 
analysis and comparison. Linear Discriminant Analysis (LDA) was found to be the best-performing classifier with 
62 % balanced accuracy and has the potential to improve further with additional data. Overall, the findings of 
this study indicate that machine learning models have the potentials to be utilized as a diagnostic tool for mTBI 
when used with SSVEP data.   

1. Introduction 

Traumatic brain injury (TBI), a widespread injury among the general 
population, has been reported to be over 50 million annually worldwide 
[1,2]. Within this broad category, Mild traumatic brain injury (mTBI), 
which is frequently observed in contact sports participants such as rugby 
and football players, constitutes a significant subset [3–5]. Previous 
research has estimated the annual incidence of mTBI in the USA to be in 
the range of 1.5 to 3.8 million [6,7], with more than 2 million cases 
reported in Europe annually [8]. In addition, the estimated hospital cost 
for sport-related mTBI in Victoria, Australia between 2002 and 2011, 
was reported to be approximately A$18 million. This commercial 
burden is considered to be underestimated as it fails to take into account 
undiagnosed and unreported mTBI, which were theorised to be higher 
than the reported cases [9]. With the rising trend of mTBI incidence with 
each passing year [10,11], the hospital cost for mTBI is only expected to 
grow. The aetiology of mTBI is largely attributed to mechanical impacts 

to the head or body which result in differential movement of the brain 
within the skull and consequent damage to brain tissue [12,13]. 
Although the impact of mTBI may initially present as minimal, without 
adequate medical intervention and management, it may result in 
chronic neurodegenerative conditions including cognitive, sensory and 
psychological dysfunctions [14–16]. Furthermore, chronic traumatic 
encephalopathy (CTE), a fatal brain condition, was found to associate 
with exposure to repeated head trauma [17]. This finding further sig
nifies the importance of detecting mTBI in athletes in order to provide 
adequate medical care and reduce their exposure to repetitive head 
trauma. Despite the debilitating consequences, mTBI often remains 
undiagnosed and untreated [18,19]. It is challenging to isolate the 
reasons behind the under-diagnosis of mTBI as they vary from patients’ 
subjectivity such as symptoms underreporting to the lack of sufficient 
biomarkers and diagnostic tools. 

Underreporting of mTBI in athletic populations can be attributed, in 
part, to the absence of interdisciplinary consensus and education 
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regarding the injury [18,20]. It has been reported that the lack of 
awareness and understanding among athletes themselves can lead to a 
failure to seek appropriate medical attention [21]. Additionally, athletes 
may be inclined to minimize their symptoms during mTBI assessments to 
avoid removal from play [22,23] or due to external pressures [24], 
leading to subjectivity and bias in the diagnostic process. Moreover, the 
symptoms associated with mTBI are often reported to be subtle and 
rapidly resolving, with adverse effects observed within 24 to 72 h post- 
injury [25–27]. Therefore, these factors would greatly affect the reli
ability of current standard assessment tools such as The Sports 
Concussion Assessment Tool (SCAT), which diagnoses sports-related 
mTBI on the sideline through a multimodal assessment of common 
symptoms [25,28]. Consequentially, SCAT is regarded as insufficient 
due to inconsistent and potentially subjective assessments [18,29], 
highlighting the need for new approaches. 

Currently, the diagnosis of mTBI is usually made through clinical 
evaluation by a physician based on the reported symptoms from the 
patients [29,30]. As this approach is inherently subjective, supplemen
tary diagnostic aids have been created to provide more objective mea
surements. The most commonly used measurements include 
neuroimaging techniques such as Computed Tomography (CT) and 
Magnetic Resonance Imaging (MRI) [31,32] and neuronal activity re
cordings such as electroencephalography (EEG) [33–35]. CT and MRI, as 
the current standard modalities for neurostructural trauma assessment, 
offer an excellent spatial resolution for diagnostic purposes [33,36]. 
However, these techniques are not ideal for the diagnosis of mTBI, as the 
condition is generally regarded as functional, instead of structural [37]. 
Furthermore, they are not feasible for rapid field-based assessments due 
to the need for specialized equipment, facilities, and trained personnel 
[31,33], limiting their use primarily to the hospital or clinical settings. 
Therefore, in recent years, the necessity for non-imaging biomarkers 
with sufficient sensitivity and specificity for mTBI detection has been 
emphasized [13]. The need for these biomarkers is more apparent in 
sports field assessments as medical facilities are limited and physicians 
are infrequently present [29,33,38]. It is imperative that more objective, 
reliable, and readily available diagnostic methods be developed to 
address the growing burden of mTBI in athletic populations and mitigate 
the limitations of current approaches. 

In contrast to the aforementioned diagnostic aids, electroencepha
lography (EEG) has been put forward as a promising alternative, offering 
several advantages over CT and MRI including its superior temporal 
resolution, portability, low cost, and minimal training requirements 
[36,39]. While CT and MRI scans provide a static snapshot of the brain, 
EEG provides a direct and ongoing measurement of functional brain 
activity [33,39], making it a valuable diagnostic aid. For the use of EEG- 
based biomarkers, most recent studies employed resting state EEG (rs- 
EEG) for mTBI classification [39–41]. One methodological variable in 
these studies is the time of recording with some studies requiring 4 min 
while others are as long as 10 min. The time required, albeit only mi
nutes, could be argued to be lengthy, limiting its appeal to patients and 
in particular athletes who are not required nor compensated for their 
time to conduct an assessment by their governing body. Further to this 
limitation is the concern that detectable changes in EEG signals may not 
occur during rest, but rather require excitation or stress to be amplified 
to the point of detection. Taking both limitations in combination further 
highlights the advantage of using event-related potentials instead of 
standard EEG, which was reported to be sensitive to cognitive 
dysfunction [42]. 

In particular, Steady-State Visual Evoked Potentials (SSVEP), which 
quantify neural population responses to a repeating visual stimulus [43], 
have demonstrated potential as an alternative EEG-based biomarker for 
mTBI with less than a minute required for data collection [29]. SSVEP 
signal was selected for this study over standard EEG signal as SSVEP 
allows the measurement of brain response to visual stimuli, which was 
reported to show abnormalities in mTBI patients [44,45]. Moreover, 
SSVEP has several advantages over traditional VEP such as simpler 

equipment requirements, relative noise artefact resilience and enhanced 
ability to withstand changes in contact impedance [46,47]. Thus, these 
advantages make SSVEP a more favourable biomarker in a non-clinical 
environment. In light of this, the present preliminary study seeks to 
expand the understanding of SSVEP as a novel potential diagnostic aid 
for mTBI by exploring its viability as a biomarker for machine learning 
classification using a data-driven approach. 

As the current understanding of the underlying mechanisms is 
limited [48,49], mTBI poses a complicated challenge for the develop
ment of effective classification solutions. However, machine learning 
algorithms have the ability to analyse complex patterns in high- 
dimensional data [50] and thus, offering an attractive solution for 
addressing the diagnostic challenges associated with mTBI. Positively, 
there is an increase in opportunities for medical practitioners to explore 
neurophysiological data with recent machine learning advancements as 
clinical tools [51,52]. Moreover, there exist various EEG signal pro
cessing techniques, including Fast Fourier Transformation (FFT), and 
Wavelet, that broaden the scope of EEG feature engineering in both time 
and frequency domains [53,54]. Some studies took advantage of these 
techniques and employed traditional machine learning algorithms, such 
as Support Vector Machines, K-nearest neighbours, and Linear 
Discriminant Analysis [40,55–57], to develop classification models. 
Whereas other studies have capitalized on the strengths of deep learning 
(DL) algorithms, such as Neural Networks on EEG signals to develop 
prediction models without the need for feature engineering [39,58]. 
Though there are numerous studies on typical EEG signals, the literature 
remains sparse on SSVEP application with machine learning for mTBI 
classification. 

In this study, our objective was to evaluate the effectiveness of ma
chine learning in classifying mild traumatic brain injury (mTBI) through 
the analysis of steady-state visual evoked potential (SSVEP) signals. 
These signals were obtained using a specialized portable electroen
cephalogram (EEG) device. We used both raw and filtered EEG data to 
preserve data integrity and extract SSVEP-based features for training the 
machine learning algorithms. Our primary aim was to determine the 
feasibility of combining machine learning with SSVEP signals to create 
an objective diagnostic tool for mTBI. To this end, we conducted a 
systematic comparison of several widely used classifiers. Our findings 
revealed that multiple classifiers demonstrated performance compara
ble to the current mTBI assessment standard, the Sports Concussion 
Assessment Tool (SCAT). This study represents a significant contribution 
toward the development of an innovative, portable, and objective sys
tem for mTBI detection, which has the potential to revolutionize di
agnostics in this field. 

2. Methods 

2.1. Participants 

Initially, we recruited a total of 468 participants from sports settings 
where individuals are frequently subjected to head injury. After filtering 
for poor data, we ended up with 436 participants for the study as out
lined in Table 1. The participants were divided into two groups: a non- 
mTBI control group (n = 400) and a clinically diagnosed mTBI group (n 
= 36). The age of the participants ranged from 17 to 54 years, and the 
cohort included males (n = 299, mean age = 23 years) and females (n =
137, mean age = 26 years). SSVEP signals were recorded from athletes 

Table 1 
Breakdown of study participants by sports cohorts and mTBI status.  

Cohort Non-mTBI (control) 
participants 

Injured (mTBI) participants 

Rugby 332 35 
Combat sport 62 1 
Other sport 6 0  
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diagnosed with mTBI within four days of diagnosis (mean [SD], 2 [1.29] 
days). All clinical data were collected under protocols approved by a 
Human Research Ethics Committee (Bellberry Limited, HREC 
180SSVEP). Participants were given detailed information regarding the 
experiment and provided informed consent to participate in the study. 

The study’s inclusion criteria consisted of athletic individuals aged 
14 years and above who were proficient in English. Exclusion criteria 
were created around limitations to electrode placement or complica
tions that could arise from the flickering visual stimulus. These included 
any open head wound, epilepsy, seizure history, sensitivity to flashing 
lights, legal blindness, or any structural brain injury and/or condition. A 
control participant was defined as someone who had not experienced 
any injury that raised the possibility of mTBI in the month before 
assessment and was not receiving treatment for a previous mTBI. 
Furthermore, observations were classified as injured (mTBI) if the sub
ject had been diagnosed with mTBI by a qualified medical practitioner. 
The period between the date of injury and SSVEP recording was docu
mented to select the data for this study. 

2.2. Data acquisition 

The prototype SSVEP acquisition device (Fig. 1A) was employed to 
collect SSVEP data. The prototype device is composed of a rear section 
that houses the unipolar electrodes for recording the signals, and a front 
visor section that delivers a 15 Hertz (Hz) flickering visual stimulus 
using white light-emitting diodes (LEDs). The system collects continuous 
SSVEP signals through three occipital electrodes (O1, O2, and Oz) and 
employs two parietal electrodes (P1 and P2) for the reference and 
ground/bias, respectively, as illustrated in Fig. 1B. Common noise 
measured across the electrode channels was utilized for common-mode 
rejection. The SSVEP signals were recorded for a fixed period of 30 s at a 
sampling rate of 250 Hz [29]. 

All measurements were conducted in non-laboratory settings 
including office spaces, sporting grounds change rooms or medical 
clinics. To minimize potential distractions and noise levels during data 
collection, the research team took measures to create a calm and quiet 
environment. There was little to no noise during data collection and the 
lighting was controlled to be soft with no abrupt changes in brightness so 
no visual artefacts would present in the signals. Participants were 
instructed to remain seated, silent, and relaxed throughout the testing 
period, with their gaze fixed on the visual stimulus. Once the partici
pants were seated, the research team then removed any potential source 
of artefacts from the participants’ hair by wiping down the hair with an 
alcohol wipe and applying the saline solution to the electrodes for better 
contact. Before recording SSVEP signals, the rear section of the 

prototype headset was positioned above the inion to ensure proper 
placement of the unipolar electrodes on the occipital lobe, as directed by 
the manufacturer. Subsequently, the front section of the headset was 
placed snugly on the face over the nasal bridge, to avoid any external 
light entering the visor. The straps on both sides of the headset were 
tightened to ensure an appropriate fit. The contact impedances of the 
electrodes were monitored through a mobile application to ensure that 
SSVEP readings were obtained with an impedance of less than 25 
kOhms. To further ensure the quality of collected data, the electrodes 
were replaced after each use. 

2.3. Data pre-processing and representation 

The SSVEP signals were processed using MATLAB (version R2021a). 
Prior to signal processing, any collected data with higher impedance 
than the criteria were rejected from the study to minimize potential 
noises being introduced to the dataset. The accepted signals were 
filtered with a Butterworth bandpass filter from 5 to 35 Hz to minimize 
the effects of low-frequency noise, main power artefacts and DC voltage 
offset [59]. Following that, Fast Fourier Transformation (FFT) was 
performed to convert filtered time-domain SSVEP data to the frequency 
domain which allows the generation of an FFT plot for further screening 
as shown in Fig. 2. The screening procedure involved examining for 
common EEG artefacts such as muscle activity, electrode and harmonic 
artefacts. Our acceptance criteria require the samples to have a mini
mum 15 Hz response of 1 μV (based on pilot testing) and no mentioned 
artefacts to be included in the machine learning analysis. Any failed 
observation based on the criteria was removed from the study. 

Fig. 2 shows examples of clean observation accepted for analysis and 
poor observation which were excluded from the study due to these data 
quality criteria. A total of 51 unique features were extracted from the 
datasets; with 30 features based on the filtered frequency series, 
including the band power of conventional EEG frequency bands; and the 
remaining 21 features were obtained from filtered time series, including 
first-order statistics. This resulted in a 436 by 51 matrix of observations 
by features which were used as input to the classification analysis. 

2.4. Classification setup and analysis 

The feature selection method utilised principal component analysis 
(PCA) to produce a new set of orthogonal principal components by 
linearly transforming the original feature set. This approach had a low 
computational complexity, which is a clear advantage over other con
ventional techniques [60]. The principal components were selected 
based on their ability to retain the most informative and discriminatory 

Fig. 1. Electrode overview of prototype SSVEP acquisition device (A). Electrodes are positioned according to the international standard 10–20 EEG system (B). 
Reference (P1) and ground/bias (P2) electrodes are yellow. Signal electrodes are blue (O1, O2, and Oz). 
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information while minimizing the presence of noise and reducing the 
risk of overfitting. Given the data size available for this study, deep 
learning algorithms such as Neural Networks are excluded as it is sug
gested to have a sample size of at least 50 times the number of weights 
[61]. As such, with only over 400 samples, the degree of freedom in 
designing the deep learning models would be greatly limited and there 
would be a risk of overfitting. Four classification algorithms, namely 
Naïve Bayes (NB), Linear Discriminant Analysis (LDA), Logistic 
Regression (LR), and Support Vector Machine (SVM), were employed in 
the study as they were utilized in past studies for mTBI classification and 
were reported to show positive outcomes [41,62,63]. The performance 
of the classifiers was evaluated using stratified k-fold cross-validation 
[50,56], which partitioned the dataset into k non-overlapping folds 
where the class proportion is maintained across each fold. For each al
gorithm, the model was trained using all but one fold and tested using 
the left-out fold. This pipeline was repeated 10,000 times to obtain a 
more accurate and reliable estimate of classification performance on the 
limited dataset [64], where different combinations of healthy and mTBI 
observations were used for training and testing in each repetition. The 
number of folds used in this process was equal to the number of mTBI 
participants, which was 36. The performance metrics to evaluate the 
classifiers were sensitivity, specificity and f1 score. To consider both 
sensitivity and specificity as a single measure of ease of comparison, 
classifier performance was also measured as balanced accuracy, 
computed as: 

Balanced Accuracy(%) =
sensitivity + specificity

2 

The optimal number of principal components necessary for each 
classifier to achieve peak performance would vary due to the unique 
underlying mechanics of each algorithm. SVM, for instance, is predi
cated on geometric properties, while the other classifiers rely on sta
tistical properties and disparate assumptions. Thus, the classification 
pipeline was performed on all algorithms with varying numbers of 
principal components in a systematic manner. Beginning with the first 
principal component, which accounted for the highest variance present 
in all original features, the pipeline was run to completion once all 
repetitions per pipeline were achieved. Then, additional principal 
components, each explaining the next highest variance, were added in 
subsequently until all principal components were employed. The 
optimal number of principal components utilized by each algorithm was 
thus determined by selecting the configuration that produced the best- 
performing classification results. 

This study postulated that incorporating more informative data into 
the training dataset would allow a more accurate overall classifier per
formance estimation. Specifically, it is proposed that increasing the 

number of data points, represented by mTBI samples, could potentially 
enable the classifiers to attain a higher performance ceiling. In order to 
obtain the estimated trajectory, the performance of the classifiers was 
evaluated while progressively increasing the number of mTBI observa
tions in the dataset. The classification started with a non-stratified in
dependent random sampling of three randomly selected mTBI 
observations. Subsequently, the training data was augmented with an 
additional mTBI observation, and the classification process was iterated 
until all mTBI observations were utilized. For comparative purposes, 
classifier performance was assessed using the optimal principal com
ponents (as determined previously), as well as four commonly employed 
principal component cut-offs that explain 90 %, 95 %, 99 %, and 99.9 % 
of the variance. Fig. 3 summarizes the experimental process flow of this 
study for visual representation. 

2.5. Statistical assessment 

The study conducted a permutation test on all classifiers to assess the 
reliability of classification results [65,66]. First, the labels for each 
group were shuffled 10,000 times, with the mTBI patient and control 
labels randomly assigned to the 436 observations. The same classifica
tion procedure was then applied to the shuffled data, across all classi
fiers, which allowed further statistical computation for the test. The p- 
values were calculated by comparing the observed test statistic to the 
randomized distribution of test statistics. To control the familywise error 
rate in multiple comparisons, the maximum statistic correction method 
was utilized to obtain the corrected p-values [67]. The significance of 
the classification result was determined using a confidence threshold of 
α = 0.05 [68,69]. Consequently, we established which numbers of 
principal components were significant for each classifier. The number of 
components among the established with the highest balanced accuracy 
was chosen for each classifier for further comparison and analysis. 

3. Results 

The optimal number of principal components required for best- 
performing classification was first determined. Fig. 4A illustrated the 
variance explained as a function of principal components. The evalua
tion of classifier performance as a function of the principal component 
size used was executed for four different classifiers, as depicted in 
Fig. 4B. The peak of each data series in this Fig. 4B identified the optimal 
number of principal components for the respective classifiers. From 
Fig. 4A and 4B, the LDA classifier achieved its best performance with 24 
principal components, which explained 97 % variance, whereas LR 
reached its optimal performance with 23 components (96.5 % variance). 
The SVM classifier, on the other hand, performed best with 19 

Fig. 2. Quality assurance standards for SSVEP readings screened for inclusion in the training dataset. (A) Accepted sample with strong 15 Hz response and minimal 
frequency noise, (B) Rejected sample due to low 15 Hz response, (C) Rejected sample due to harmonics present throughout the frequency range. 
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components (93.7 % variance), while NB achieved its highest perfor
mance with only five components (62.4 % variance). Most classifiers in 
this study used over 90 % variance to obtain their best performance, 
except for NB. Additionally, the classifiers’ trends varied considerably, 
indicating the need for further reliability testing. Among the classifiers, 
the SVM classifier achieved the best performance (~64 % balanced ac
curacy) using the aforementioned number of principal components, 
followed by the LDA and LR classifiers (~62 % balanced accuracy), 
while the NB classifier performed the worst (~56 % balanced accuracy). 
The permutation test was used to identify statistically significant prin
cipal components for each classifier, using the p-values threshold of less 
than 0.05 as depicted in Fig. 4C. The hollow circles in this figure rep
resented the statistically significant principal components for each 

classifier. LDA had the most significant components, followed by LR and 
SVM respectively, and NB had no components that achieved a p-value 
less than 0.05. After maximum statistic correction, LDA, LR, and SVM 
classifiers had, respectively, one, six, and two statistically corrected 
significant principal components, as shown by the dots within the hol
low circles. The principal components that yield the highest balanced 
accuracy for most classifiers were statistically significant. 

All relevant mean performance metrics of the classifiers were listed 
in Table 2. Except for NB, which was skewed towards sensitivity, the 
remaining classifiers had a better balance between sensitivity and 
specificity. Particularly, SVM and LDA had better specificity than 
sensitivity whereas it is vice versa for LR. NB achieved the highest 
sensitivity (~65 %) with the trade-off being its specificity (~47 %). 

Fig. 3. Experimental Methodology Process Flow
chart. Experiment 1 began by testing various 
numbers of principal components for training to 
identify the optimal combination for each algo
rithm. Once the ideal principal components combi
nation was determined, Experiment 2 proceeded to 
train the algorithms using a variable mTBI database. 
Finally, the performance of the algorithms, when 
trained with the established optimal principal 
components combination, was compared to their 
performance when trained with commonly used 
variance percentages as inputs, rather than principal 
components.   
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Whereas both SVM and LDA achieved the highest specificity (~64.5 %) 
without any significant trade-off. In addition, both SVM and LDA had 
similar f1 scores (~0.64), followed by LR (~0.61) and then NB (~0.48). 

With the optimal principal components determined for each classi
fier, the corresponding balanced accuracy averaged across 10,000 rep
etitions, was plotted as a function of mTBI data size as shown in Fig. 5. 
Overall, the findings revealed that performance improved across all 
classifiers as more mTBI observations were added to the training data, 
although the levels of improvement varied among the classifiers. 
Notably, only NB’s performance had a linearly proportional relationship 
with training data, where each addition of mTBI observation led to an 
approximately 0.2 % increase in accuracy. The LR classifier’s perfor
mance, on the other hand, exhibited a sharp improvement after a small 
number of mTBI observations were added, which was followed by a 
decline in the accuracy rate from 0.6 % per observation down to 0.2 % 
per observation as the mTBI data size continued to grow. In contrast, the 
LDA classifier showed an increasing rate of performance improvement 
as the mTBI observations used in training approached the exhaustion of 
the available dataset. This was remarkably different from the trend 
observed in the LR classifier, which suggests that the LDA classifier 
might outperform the LR classifier as more observations are added. 
Additionally, the SVM classifier shared a similar trajectory to the LDA 

classifier, with a slightly better final performance. Notably, there was a 
spike in SVM’s performance towards the end of the available mTBI 
dataset, increasing by approximately 1 % per mTBI observation added, 
which was distinct from the trends observed in the other classifiers. 

To enable a more direct comparison between classifiers, Fig. 6 pre
sents their performance relative to mTBI data size using principal 
components that account for the same variance. LDA (Fig. 6A) showed a 
distinct performance trend, with only 95 % variance experiencing a 

Fig. 4. (A) Cumulative proportion of variance explained in the dataset as a function of the number of principal components. (B) Classifier performance as a function 
of the number of principal components. (C) Statistical significance of the classification results, where the hollow circles represent classifier performance significantly 
higher than chance, and the dots represent significant results after using correcting for the multiple tests. 

Table 2 
Performance metrics of all classifiers, Support Vector Machine (SVM), Naïve 
Bayes (NB), Linear Discriminant Analysis (LDA), and Logistic Regression (LR), 
including mean balanced accuracy, mean sensitivity, mean specificity and mean 
f1 score.  

Classifier Balanced Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

F1 
Score 

SVM 63.64 62.78 64.50 0.6445 
NB 56.00 65.28 46.63 0.4839 
LDA 62.28 60.00 64.55 0.6422 
LR 62.43 63.61 61.25 0.6147  

Fig. 5. A comparison in balanced accuracy performance as a function of mild 
traumatic brain injury (mTBI) observations for classifiers, Support Vector Ma
chine (SVM), Naïve Bayes (NB), Linear Discriminant Analysis (LDA), and Lo
gistic Regression (LR), using their optimal amount of variance as estimated via 
principal component analysis (PCA). 
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decline after reaching its peak, while the other variance thresholds 
exhibited an increasing trend with a steeper slope of performance in
crease. In contrast, LR and SVM (Fig. 6B and 6D) exhibited similar 
performance behaviour for most variance thresholds, where the 
balanced accuracy reached a certain peak before declining as the dataset 
size increases. For both classifiers, the 95 % variance plot was an 
exception, which had a persistent increasing trend. On the other hand, 
NB (Fig. 6C) exhibited relatively similar performance regardless of 
variance threshold. 

With the statistical significance of the principal components taken 
into account (Fig. 4C), it was observed that the mTBI increment tra
jectory of the LR and SVM classifiers for 95 % variance was the only 
significant trajectory with an increasing trend. On the other hand, LDA 
had a wider range of significant principal components, including its 
variance settings that returned an increasing trend in the mTBI incre
ment trajectory. NB was not considered as it had no significant principal 
component. 

4. Discussion 

We investigated the potential of machine learning models developed 
using SSVEP-based features for the classification of mTBI, considering 
both the current performance and the possibility for further develop
ment of the models. The capability and reliability of the machine 
learning models were evaluated by validating them with different 
principal components extracted from the available dataset. The results 
demonstrated reliable classifiers with comparable performance to the 
existing standard assessment tool. Additionally, the study found that the 
performance ceiling for the classifiers had not been reached, as evi
denced by the increasing trend in balanced accuracy with increasing 
mTBI observation size. The study included participants diagnosed with 

mTBI within three days (with two exceptions) and controls, indicating 
the potential of the classifiers as a diagnostic aid. The protocol for data 
collection required 30 s of SSVEP recordings to be collected, using a 
wireless device controlled by a tablet or phone, making it a convenient 
tool for use on the sideline, locker room, or in limited spaces with 
minimal preparation required. 

The initial experiment in this study demonstrates the potential of 
machine learning models to achieve performance comparable to the 
standard assessment tool, SCAT. By systematically increasing the prin
cipal components used for model training and testing, the study iden
tified the optimal principal components for each algorithm. Notably, 
most classifiers examined, namely Linear Discriminant Analysis (LDA), 
Logistic Regression (LR), and Support Vector Machines (SVM), achieved 
a balanced accuracy of 62 % or higher (over 60 % sensitivity, over 61 % 
specificity, over 0.61 f1 score). In comparison, a recent study that uti
lized SCAT to diagnose 36 participants, consisting of 19 individuals with 
mTBI and 17 controls, achieved a balanced accuracy of 60 % (100 % 
sensitivity, 20 % specificity) [70]. In this study, the mTBI assessment 
method used to train and classify against the machine learning models, 
EEG, was demonstrated to be quick (30 s of data). This is important 
when considering its ability to provide similar diagnostic aiding per
formance to SCAT, while overcoming SCAT’s major disadvantages, 
including testing time and objectivity. There is a consensus that SCAT 
required a minimum of 10 min to complete [28]. This led to the test 
being reported as lengthy and often interrupted [70]. Furthermore, 
SCAT was designed to take advantage of mTBI symptoms via a series of 
neurological and functional brain tests [25]. However, this design is 
detrimental to the result reliability as the symptom endorsement was 
reported to be subjective [71]. 

The second experiment of this study suggests that the classifiers 
examined have the potential for further improvement. Overall, with 

Fig. 6. A comparison of common variance settings of 90 %, 95 %, 99 % and 99.9 % for classifier performance as a trajectory of mild traumatic brain injury (mTBI) 
observations increment (A) Linear Discriminant Analysis, (B) Logistic Regression, (C) Naïve Bayes and (D) Support Vector Machine. The trend of each plot would be 
used to determine how the statistical significance of variance input would affect the potential of the classifier performance. 

Q.T. Hoang et al.                                                                                                                                                                                                                               



Biomedical Signal Processing and Control 86 (2023) 105274

8

optimal principal components, all classifiers demonstrated an increasing 
trend in balanced accuracy as the mTBI data size increased, with LDA 
and SVM displaying the highest increase rates. Although, the increasing 
trend was not observed in other variance setups, with only LDA 
demonstrating a consistent trend in different trials. Notably, except for 
NB, the remaining classifiers’ optimal components are all statistically 
significant according to the adjusted p-values. Based on the availability 
of significant components, it could be argued that LDA and LR are more 
reliable than SVM, although both classifiers were 2 % less accurate than 
SVM. When considering both accuracy and reliability, LDA was deemed 
to be the leading classifier. However, this finding is limited to the 
applied dataset and may be subject to change as more observations 
result in different variances. Therefore, while the study provides evi
dence to support LDA as the most suitable classifier among those 
investigated, it does not imply that other classifiers should be dis
regarded for this application. 

A limitation of our study was its relatively small sample size, which 
restricted the findings’ statistical power and the classifiers’ optimization 
due to the risk of overfitting [72]. It was reported that up to 560 an
notated samples could be needed to reach the performance target with 
acceptable error [73]. This limitation was attributed to the logistical 
challenges encountered during data collection, particularly concerning 
mTBI data. The process of identifying and assessing mTBI is complex and 
time-consuming, requiring incident reports by team coaches, diagnosis 
by a medical practitioner, and SSVEP data collection on-site by trained 
personnel, all within a limited timeframe. Another limitation was sub
ject compliance in completing the study and its associated follow-up 
assessments. To manage these variables, the study design focused on 
controlled research sites of high concussion occurrence, primarily con
tact sporting clubs in Australia. However, this approach may affect the 
generalizability of the findings, which is a common issue for an appli
cation intended for the general population. The dataset used in this 
study was collected from a single city and mostly from one sport disci
pline, rugby union. Although contacts in this sport can be compared to 
those in other football codes such as rugby league, Australian Rules 
Football, and American Football. On the other hand, traditional football 
(“soccer”) does not have the same quantum of direct person-to-person 
physical contact but has the additional element of “heading” the ball, 
which should be considered applicable to some extent as both elements 
were reported to correlate with traumatic brain injury in the sport 
[74,75]. By expanding and diversifying the data collection sites and 
other sporting disciplines, the machine learning approach could be 
broadened, resulting in a more robust mTBI classification model and 
increased reliability. 

Ongoing research efforts are dedicated to improving the perfor
mance of the investigated classifiers by expanding the dataset size, 
exploring additional SSVEP-based features, and optimising the models. 
Refinements in the prototype SSVEP device since the collection of ana
lysed data are indicative that the model can be improved in future 
studies. Consequently, the future direction for the research would 
involve investigating more SSVEP features such as connectivity and 
complexity features. Additionally, the machine learning algorithms 
researched in this study would be validated on a larger dataset to ensure 
the generalizability of the study’s findings. 

5. Conclusion 

This study demonstrates that machine learning classifiers, utilizing 
SSVEP-derived data, show promise in distinguishing between mTBI 
patients and healthy individuals. Overall, the classifiers employed in this 
research exhibited a gradual increase in classification performance as 
more mTBI observations were integrated into the model. This finding 
suggests that the classifiers have not yet reached their performance peak 
and have further room for improvement. Upon closer examination, 
Linear Discriminant Analysis (LDA) proved to be the most reliable and 
overall best-performing model. Additionally, LDA achieved a 62 % 

balanced accuracy, which is comparable to SCAT, the current standard 
assessment tool for sports-related mTBI. These findings carry significant 
implications for the clinical diagnosis of mTBI, a form of brain injury 
that often goes undetected using traditional diagnostic methods. The 
implementation of an SSVEP-based classification approach could pro
vide clinicians with an additional tool to aid in the identification of 
mTBI, potentially enhancing patient outcomes through early interven
tion and treatment. 
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