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Abstract 

High-density EEG recording enhances spatial resolution for neural signal decoding, yet 

the relationship between electrode density and decoding performance, as well as the 

minimum number of electrodes required for effective decoding, remains unclear. To 

address this, we systematically investigated the decoding accuracy of neural signals 

across varying electrode densities (16, 32, 64, 96, and 128 electrodes) using visual 

grating stimuli characterized by orientation, contrast, spatial frequency, and color. Our 

findings showed that accurate decoding of these visual grating features was achievable 

even with as few as 16 electrodes, highlighting the robustness of decodable neural 

signals. To test the generalization of these results to more complex natural stimuli, we 

conducted a similar analysis with a diverse set of naturalistic images categorizable into 

living/non-living and moving/non-moving. The results consistently showed that 

effective decoding persists even with only 16 electrodes, demonstrating robust 

decoding efficacy even for complex naturalistic stimuli. This work provides valuable 

insights into the efficient neural decoding offered by low-density EEG and robustness 

of neural signal representation. 

Keywords: low-density EEG; neural decoding; electrode density; decoding accuracy; 

stimulus generalization 
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1. Introduction 

Electroencephalography (EEG) is a widely used non-invasive technique with high 

temporal resolution that has become a valuable tool for neuroimaging studies1. In 

particular, it is extensively used in visual studies to investigate cognitive processes such 

as object recognition, spatial attention, working memory, and motion perception2-7. 

Numerous studies using diverse visual stimuli, from simple gratings to natural scenes, 

suggest that EEG signals encode rich information about both low- and high-level visual 

representations4-7.  

Despite these versatile neural representations across stimulus types, the extent to 

which the number of electrodes affects decoding performance remains controversial8-

10. With the advancement of EEG technology, the number of electrodes used in 

recording has steadily increased, leading to the development of high-density EEG 

systems. Generally, these systems offer enhanced spatial resolution and improved 

neural signal decoding capabilitie10,11. However, this does not mean that lower-density 

EEG cannot support meaningful decoding. Recent studies have suggested that image 

classification, image reconstruction, and functional connectivity analysis may still be 

feasible using low-density EEG, challenging the assumption that more electrodes 

necessarily yield accurate visual decoding performance8,9,12. 

From a neurophysiological perspective, this possibility is supported by the 

biophysical properties of EEG. Although EEG signals originate from anatomically 

localized sources, such as early visual areas in the occipital cortex involved in encoding 

low-level features13, the resulting scalp potentials are shaped by volume conduction, 

which causes neural activity to spread through the brain and skull. This process 

produces spatially widespread but locally enhanced scalp fields14-17. As a result, sparse 

but broadly distributed EEG montages, when designed to preserve full-head coverage, 

may still capture the key components of multivariate signal patterns, allowing even 

low-density electrode configurations to retain sufficient information for reliable 

decoding8,9,12,18. 

Moreover, deploying high-density EEG is associated with several limitations, 

including high costs, extensive setup time, lack of portability, and substantial 
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computational demands8,9,12. In contrast, low-density EEG has been shown to be 

effective in brain-computer interface (BCI) applications, particularly among individuals 

with motor disabilities19. In clinical practice, especially in epileptology, low-density 

EEG is routinely used, with 9 to 21 electrodes commonly employed for diagnostic 

purposes20,21. These observations raise a critical question: can comparable decoding 

performance be achieved with a reduced number of electrodes, thereby making EEG-

based decoding more practical and widely accessible? 

To address this issue, we systematically investigated the impact of electrode 

density on visual decoding performance. Using a publicly available EEG dataset22 

featuring visual grating stimuli varying in orientation, contrast, spatial frequency, and 

color, we examined decoding accuracy across different electrode densities (16, 32, 64, 

96, and 128 electrodes). Our findings revealed that accurate decoding of visual grating 

features could be achieved even with as few as 16 electrodes, demonstrating the 

robustness of neural signal representation. To assess the generalizability of these results, 

we extended our analysis to a diverse set of natural images from another publicly 

available EEG dataset23. This dataset included visual image categories such as living 

animals (whales), living plants (flowers), non-living moving artificial objects (trains), 

non-living moving natural objects (waterfalls), non-living still artificial objects (cups), 

and non-living still natural objects (rocks). Using these natural stimuli, we again found 

that decoding performance remained robust even with as few as 16 electrodes, 

suggesting that high-level visual information can also be reliably captured with low-

density EEG. The consistency of decoding performance across these varied stimulus 

types further reinforces the notion that effective neural decoding is achievable with 

low-density EEG. 
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2. Methods 

This study utilized publicly available datasets from OpenNeuro: Experiment 1 

(https://doi.org/10.18112/openneuro.ds004357.v1.0.1) and Experiment 2 

(https://doi.org/10.18112/openneuro.ds003885.v1.0.7). In Experiment 1, participants 

were presented with oriented grating stimuli, shown for one frame (16.67 ms) in 

sequences at 6.67 Hz (133 ms ISI; 150 ms SOA) or 20 Hz (33 ms ISI; 50 ms SOA), and 

were asked to fixate on a black bullseye and detect when the fixation bullseye changed 

to a filled circle target22. In Experiment 2, participants performed a categorization task 

with natural stimuli, classifying images based on the criterion “whether they are alive 

or not,” as well as a passive viewing task, during which they viewed stimuli presented 

in rapid streams23. To investigate how electrode density influences decoding 

performance, we reanalyzed the 128-channel electroencephalography (EEG) data from 

both experiments using different electrode density configurations (16, 32, 64, 96, and 

128 electrodes). We applied the exact analysis pipelines from the original studies to the 

reduced configurations, and summarise these analysis pipelines below. 

2.1 Participants 

Both experiments were conducted under local ethics committee approvals, and 

informed written consent was obtained from all participants. Experiment 122 involved 

16 participants (11 females and 5 males, age range: 18–27 years), while Experiment 

223 included 24 participants (15 females and 9 males, age range: 18–26 years).  

2.2 Apparatus 

In Experiment 1, stimuli were presented centrally with a visual angle of 6.5°, while in 

Experiment 2, the visual angle was approximately 5°. In both experiments, EEG data 

were recorded while participants viewed experimental stimuli presented on a monitor 

with a 60 Hz refresh rate. Recordings were acquired at a sampling rate of 1000 Hz using 

a 128-channel BrainVision ActiCap system (Brain Products GmbH). Electrode 

placement followed standard scalp configuration guidelines, using the international five 

percent system in both experiments24. EEG signals were referenced online to FCz. 

2.3 Stimuli 

Both original experiments utilized well-documented stimulus sets. As described in the 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 10, 2025. ; https://doi.org/10.1101/2025.07.07.663494doi: bioRxiv preprint 

https://doi.org/10.1101/2025.07.07.663494
http://creativecommons.org/licenses/by/4.0/


original study, the stimuli in Experiment 122 consisted of 256 oriented sinusoidal 

gratings generated using the GratingStim function in PsychoPy25. Each stimulus 

subtended 6.5° of visual angle and varied systematically along four visual feature 

dimensions: colour, spatial frequency, contrast, and orientation (Fig. 1A). Four levels 

were defined for each feature dimension. The four colours were RGB values ([66, 10, 

104], [147, 38, 103], [221, 81, 58], [252, 165, 10]) that were approximately equidistant 

in colour space, and each was paired with its complementary colour. Orientations 

(22.5° , 67.5° , 112.5° , 157.5° ) were evenly spaced circularly, while spatial 

frequencies (2.17, 1.58, 0.98, 0.39 cycles/°) and contrast values (0.9, 0.7, 0.5, 0.3) 

were linearly spaced. The resulting stimulus space included all 256 possible 

combinations. To prevent potential confounds related to phase, the phase of each grating 

was randomly varied on each presentation. 

The stimuli in Experiment 223, as described in the original study, comprised 400 

naturalistic colour images sourced from publicly available image databases 

(www.pixabay.com and www.pexels.com) under Creative Commons 0 licenses. All 

images were manually processed by the original authors using GIMP (v2.10.14)26 to 

blur identifiable text (e.g., brand names) and were subsequently cropped and resized to 

approximately 5°  of visual angle. The images were organized into six semantic 

categories based on Goldberg and Thompson-Schill27: animals (bee, cat, dog, dolphin, 

eagle, horse, lemur, pigeon, tiger, whale) and plants (cactus, clover, fern, flower, grass, 

lemon tree, moss, palm tree, tree, vine), which each included 10 objects. For all other 

categories, still artificial things (bench, clothes peg, headphones, lock, mug), still 

natural things (cliff, crystal, rock, sand, shell), moving artificial things (boat, bus, car, 

helicopter, train), and moving natural things (fire, hot spring, river, waterfall, waves), 

there were 5 objects. Within each category (e.g., cat, bench), there were 10 different 

images (e.g., cat1, cat2, … cat10). For objects capable of movement, the corresponding 

images depicted dynamic scenes (e.g., dolphins leaping out of the water, flowing 

waterfalls; see Fig. 1B), although all stimuli were presented as static images. 

Comprehensive information is provided in Shatek et al.23. 

2.4 EEG experiment procedure 
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Neural responses were collected using electroencephalography (EEG) while 

participants viewed experimental stimuli and performed specific tasks, following 

protocols from the original studies22,23. 

2.4.1 Experiment 1 

Participants viewed sequences of 256 grating stimuli, each presented for 16.67 ms at 

either 6.67 Hz (150 ms SOA) or 20 Hz (50 ms SOA). Each sequence consisted of all 

256 stimuli presented in random order, and 80 sequences were shown in total, with each 

stimulus repeated 40 times per frequency. A fixation bullseye appeared one second 

before each sequence and remained superimposed throughout. Participants pressed a 

button when the bullseye briefly changed to a filled circle, which occurred 2–4 times 

per sequence (Fig. 1C). 

2.4.2 Experiment 2 

Participants completed eight blocks alternating between an categorization task and a 

passive viewing task. For the current reanalysis, only the “alive” category task (2 blocks) 

and the passive viewing task (4 blocks) were included. To balance trial numbers across 

the six natural stimulus categories: living animals (whales), living plants (flowers), non-

living moving artificial objects (trains), non-living moving natural objects (waterfalls), 

non-living still artificial objects (cups), and non-living still natural objects (rocks), half 

of the animal and plant trials were randomly selected. 

     For our reanalysis, in the “alive” task, 1200 trials (200 trials for each category) 

were divided into 10 sequences, each containing 120 trials, with 20 trials from each 

category. Each trial consisted of a fixation cross for a random duration between 500 ms 

and 1000 ms, followed by an image in the center of the screen for 100 ms. Participants 

had 1000 ms to judge whether the image depicted a living object. A response was 

confirmed by the fixation cross filling in; otherwise, the screen displayed “Too late!” 

(Fig. 1E). Similarly, in the passive viewing task, 3600 trials (600 trials per category) 

were divided into 10 sequences of 360 trials, each containing 60 trials per category. 

Each trial consisted of a 100 ms image presentation followed by a 50 ms inter-stimulus 

interval. Participants were instructed to monitor a fixation bullseye and respond by 

pressing a button whenever it changed color to red (Fig. 1D). For further procedural 
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details, see Shatek et al.23. 

2.5 EEG data analysis 

2.5.1 EEG preprocessing 

Preprocessed EEG data were obtained directly from the original datasets. As described 

in the source publication22,23, signals had been re-referenced to the average reference, 

low-pass filtered at 100 Hz, high-pass filtered at 0.1 Hz, and down-sampled to 250 Hz. 

Epochs were constructed from 100 ms prior to 600 ms after each image presentation 

for Experiment 1, and from 300 ms before each stimulus appeared on the screen to 1000 

ms after stimulus onset for Experiment 2. No further preprocessing steps were applied. 

2.5.2 Stimulus decoding 

To examine the effect of electrode density on decoding performance, we performed 

time-resolved multivariate pattern analysis (MVPA)28 on preprocessed EEG data using 

CoSMoMVPA29 in MATLAB. Neural responses were decoded at each time point for 

five electrode density levels (16, 32, 64, 96, and 128 electrodes), using subsets of 

electrodes sampled from the original 128-channel montage (Supplementary Table 1). 

Note that we followed standard configurations commonly used in low-density EEG 

devices, and ensured that electrode subsets were evenly distributed across the scalp (see 

Fig 2 head maps). 

For Experiment 1, we decoded EEG epochs to grating stimuli varying across four 

visual features: orientation, contrast, spatial frequency, and color (each with four levels). 

For Experiment 2, we decoded six natural image categories: living animals (whales), 

living plants (flowers), non-living moving artificial objects (trains), non-living moving 

natural objects (waterfalls), non-living still artificial objects (cups), and non-living still 

natural objects (rocks). Regularized linear discriminant analysis (LDA) classifiers were 

trained and tested using a leave-one-sequence-out cross-validation procedure. For each 

fold, classifiers were trained on data from all but one sequence and tested on the held-

out sequence, cycling through all sequences. Decoding accuracy was defined as the 

proportion of correctly classified trials and was assessed separately for each time point, 

visual feature or category, and electrode density. Performance was compared against 

theoretical chance levels (0.25 for grating features, 0.167 for natural image categories). 
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2.5.3 Statistical inference 

To statistically assess whether group-level decoding accuracies exceeded chance, we 

computed Bayes factors30-32, as implemented in the BayesFactor R package33 and its 

corresponding implementation for time-series neuroimaging data32. The prior for the 

null hypothesis was set at chance level for decoding. The alternative hypothesis prior 

was an interval ranging from small effect sizes to infinity, accounting for small above-

chance results as a result of noise30,32. 

The onset of above-chance decoding was defined as the first of three consecutive 

time points with BF > 10. To be able to compare onset and peak times, we calculated 

95% confidence intervals by using a leave-two-participants-out jackknifing approach, 

where we calculated the onset and peak for all possible leave-two-out permutations (n 

= 120 for 16 participants in Experiment 1 and n = 276 for 24 participants in Experiment 

2), and took the 95th percentile of the resulting distributions. 
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3. Results 

To address how electrode density influences decoding performance, we systematically 

examined decoding accuracy across five electrode configurations (16, 32, 64, 96, and 

128 channels) while decoding four levels of low-level visual grating features 

(orientation, contrast, spatial frequency, and color) in Experiment 1, and high-level 

natural image categories spanning six semantic classes in Experiment 2. 

3.1 Dynamic visual grating feature coding 

Using multivariate pattern analysis (MVPA), we successfully decoded feature-specific 

information for orientation, contrast, spatial frequency, and color at a presentation rate 

of 6.67 Hz across electrode densities ranging from 16 to 128 channels (Fig. 2, top panel). 

Notably, reliable decoding was achieved for all four features even with the lowest 

density of 16 electrodes. To evaluate temporal consistency across electrode densities, 

we examined group-level decoding onset (defined as three consecutive time points with 

Bayes factors >10) and peak decoding latency. For all four features, decoding onset 

consistently emerged before 90 ms post-stimulus across all configurations, while peak 

decoding latencies were clustered around 120 ms (Fig. 2, middle panel), indicating that 

the temporal dynamics of feature processing were largely preserved irrespective of 

channel count. Spatial consistency was further examined using topographical decoding 

maps. For all four features, decoding-related activity was consistently localized to 

occipital and parietal regions, with substantial spatial overlap observed across electrode 

densities (Fig. 2, head maps), suggesting a stable spatial topography of neural 

engagement. Finally, to quantify temporal profile similarity, we computed pairwise 

correlations of decoding time courses across all electrode configurations. Notably, the 

minimum correlation between the 16-electrode montage and higher-density 

configurations was significantly greater than 0.916 (r = 0.916 for orientation, 0.995 for 

spatial frequency, 0.992 for color, and 0.994 for contrast; all p < 0.001). This high 

degree of inter-density correlation (Fig. 2, bottom panel) reinforces the robustness and 

reproducibility of the decoding profiles. Together, these findings demonstrate that 

accurate, temporally consistent, and spatially overlapping decoding of multiple visual 

grating features is robust across electrode densities, including even the sparsest EEG 
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configurations, underscoring the efficiency of low-density EEG for neural decoding. 

Next, we further examined whether these findings generalize to a faster stimulus 

presentation rate (20.00 Hz). Applying the same multivariate pattern analyses to stimuli 

presented at 20.00 Hz (Fig. 3), we observed similar decoding accuracy, timing, and 

spatial patterns across all electrode configurations. To assess temporal consistency 

across densities, we again computed pairwise correlations of the decoding time courses. 

Notably, the minimum correlation between the 16-electrode montage and higher-

density configurations remained significantly high, with values of r = 0.814 for 

orientation, 0.996 for spatial frequency, 0.992 for color, and 0.987 for contrast (all p < 

0.001). These findings confirm that decoding performance remains robust across 

electrode densities, even under accelerated stimulus presentation rates. 

3.2 Dynamic natural stimuli coding 

We next examined whether the decoding consistency across electrode densities extends 

to high-level, naturalistic visual input. To test this, we applied the same multivariate 

pattern analysis to EEG data collected during the viewing of natural images from six 

semantic categories: living animals (whales), living plants (flowers), non-living moving 

artificial objects (trains), non-living moving natural objects (waterfalls), non-living still 

artificial objects (cups), and non-living still natural objects (rocks). Analyses were 

conducted separately for the categorization task (Fig. 4A) and the passive viewing task 

(Fig. 4B), across five electrode densities (16, 32, 64, 96, and 128 channels).  

In both tasks, decoding accuracy for object category was above chance across all 

electrode densities. Group-level decoding time courses revealed similar trajectories 

regardless of channel count, with decoding performance rising rapidly following 

stimulus onset and peaking between ~180–220 ms across all configurations (Fig. 4, top 

and middle panel). These results suggest that high-level semantic information, 

including animacy and object motion, is reliably encoded in EEG signals, even when 

recorded with a small number of electrodes. We further assessed spatial consistency 

using topographical decoding maps. For both tasks, decoding-related activity exhibited 

strong spatial overlap across electrode densities (Fig. 4, head maps), suggesting a stable 

spatial signature of categorical visual processing. To quantify the similarity of decoding 
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dynamics, we computed pairwise correlations of the time series across all five 

configurations. In both tasks, correlations were consistently high across electrode 

configurations (Fig. 4, bottom panel). The minimum correlation between the 16-

electrode montage and higher-density configurations was 0.973 and 0.975 for the two 

tasks, respectively (all p < 0.001), confirming the robustness of temporal decoding 

profiles across varying densities. Together, these findings demonstrate that high-level 

visual information can also be accurately and consistently decoded from EEG signals 

even with sparse electrode configurations, further supporting the utility of low-density 

EEG for neural decoding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 10, 2025. ; https://doi.org/10.1101/2025.07.07.663494doi: bioRxiv preprint 

https://doi.org/10.1101/2025.07.07.663494
http://creativecommons.org/licenses/by/4.0/


4. Discussion 

In this study, we systematically examined how varying EEG electrode densities 

influence neural decoding performance for both low-level (Experiment 1) and high-

level (Experiment 2) visual stimuli. Remarkably, we found that decoding accuracy in 

temporal dynamics remained above chance even with as few as 16 electrodes, 

regardless of stimulus complexity or task demands. In addition, spatial patterns of 

decoding-related activity were broadly consistent across densities, suggesting a degree 

of spatial robustness. These findings highlight the reliability and generalizability of 

EEG-based neural decoding under sparse spatial sampling conditions. 

Prior studies have suggested that increasing EEG electrode density enhances 

decoding accuracy, particularly for fine-grained perceptual task10,11. However, this does 

not imply that lower-density EEG cannot support decoding performance comparable to 

that of high-density systems. Recent findings8,9,12 indicate that reliable decoding may 

still be possible with a reduced number of electrodes. Our results align with this 

emerging perspective by systematically offering evidence across a range of electrode 

configurations and stimulus types across both low- and high-level visual domains, 

unlike earlier studies that addressed only one level of stimulus complexity8,10. 

Although EEG signals originate from anatomically localized sources, such as early 

visual areas in the occipital cortex involved in encoding low-level features13,34,35, they 

give rise to scalp potentials that are both locally enhanced and spatially distributed due 

to volume conduction14-17. Specifically, neural activity from focal sources propagates 

through the brain and skull, producing widespread scalp fields that extend well beyond 

the cortical origin. At the same time, these fields tend to exhibit maximal amplitude 

near their generating sources, which explains the consistently observed topography 

maps over occipital regions in Experiment 1. This dual property of EEG, global spread 

with regional specificity, enables sparse but widely distributed electrode arrays to 

capture the key components of multivariate signal patterns8,9,12. As long as the electrode 

montage ensures full-head coverage, even low-density configurations can retain 

sufficient information for effective decoding. Our findings support this principle: 

despite substantial reductions in electrode count, we observed reliable decoding of both 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 10, 2025. ; https://doi.org/10.1101/2025.07.07.663494doi: bioRxiv preprint 

https://doi.org/10.1101/2025.07.07.663494
http://creativecommons.org/licenses/by/4.0/


temporal dynamics and spatial structures, across both low- and high-level visual tasks. 

A key strength of this study lies in the systematic manipulation of electrode density 

across two distinct experimental datasets, which provides robust validation of the 

findings. One limitation, however, is that the electrode positions in the reduced-density 

setups were fixed and based on standard EEG configurations, rather than being 

optimized for individual participants or task demands. To fully leverage the benefits of 

using a smaller number of electrodes, future studies could explore individualized 

electrode selection strategies, for example, selecting the most informative channels 

based on subject-specific signal-to-noise ratios, decoding performance, or task-related 

activation patterns36. 

Our results demonstrated that reliable decoding can be achieved with fewer 

electrodes, which supported the broadly distributed activities across the whole brain 

and opened new possibilities for scalable applications such as mobile brain-computer 

interfaces, clinical monitoring, and real-world cognitive assessment37-40. These findings 

carry important implications for the development of portable and cost-effective EEG 

systems. 
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Figure legends 

 
Figure 1. Experimental paradigm for Experiments 1 and 2 with EEG. Sample stimuli 

are shown in (A) for Experiment 1 and (B) for Experiment 2. In Experiment 1, visual 

grating stimuli were presented for one frame (16.67 ms) at 6.67 Hz (133 ms ISI; 150 
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ms SOA) or 20 Hz (33 ms ISI; 50 ms SOA). Participants were asked to detect when the 

fixation bullseye changed to a filled circle target and respond using a button press. In 

Experiment 2, during passive viewing trials (D), participants viewed a rapid stream of 

natural images and responded by pressing a button when the fixation spot changed to 

red. During categorisation trials (E), participants categorised images based on whether 

each depicted something alive or not alive. Note that all images are magnified here for 

clarity; in the actual presentation, they occupied a smaller proportion of the screen. 

Panels (A) and (C) are adapted from Grootswagers et al.22, while Panels (B), (D), and 

(E) are adapted from Shatek et al. 23. 
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Figure 2. Dynamics of visual coding for orientation, spatial frequency, colour, and 

contrast at a 6.67 Hz stimulus presentation rate with varying electrode density. (A) The 

time course of decoding accuracy for orientation with varying electrode density at a 

6.67 Hz presentation rate. Confidence intervals for the onsets and peaks of individual 

electrode densities are plotted above the decoding traces. The head maps illustrate the 

channel clusters with the highest feature information at the peak of decoding, based on 

results from a channel searchlight analysis. Bayes Factors for classification evidence 

compared to chance (0.25) are plotted below. In the bottom row, the correlation 

coefficient matrix across different electrode densities and the corresponding correlation 

coefficient bar plot are displayed. (B–D) Same as (A), but for spatial frequency (B), 

colour (C), and contrast (D). 
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Figure 3. Dynamics of visual coding for orientation, spatial frequency, colour, and 

contrast at a 20.00 Hz stimulus presentation rate with varying electrode density. (A) 

The time course of decoding accuracy for orientation with varying electrode density at 

a 20.00 Hz presentation rate. Confidence intervals for the onsets and peaks of individual 

electrode densities are plotted above the decoding traces. The head maps illustrate the 

channel clusters with the highest feature information at the peak of decoding, based on 

results from a channel searchlight analysis. Bayes Factors for classification evidence 

compared to chance (0.25) are plotted below. In the bottom row, the correlation 

coefficient matrix across different electrode densities and the corresponding correlation 

coefficient bar plot are displayed. (B–D) Same as (A), but for spatial frequency (B), 

colour (C), and contrast (D). 

 

 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 10, 2025. ; https://doi.org/10.1101/2025.07.07.663494doi: bioRxiv preprint 

https://doi.org/10.1101/2025.07.07.663494
http://creativecommons.org/licenses/by/4.0/


 

Figure 4. Dynamics of visual coding for natural stimuli at categorisation and passive 

viewing tasks with varying electrode density. (A) The time course of decoding accuracy 

at categorisation task with varying electrode density. Confidence intervals for the onsets 

and peaks of individual electrode densities are plotted above the decoding traces. The 

head maps illustrate the channel clusters with the highest categorical information at the 

peak of decoding, based on results from a channel searchlight analysis. Bayes Factors 

for classification evidence compared to chance (0.167) are plotted below. In the bottom 

row, the correlation coefficient matrix across different electrode densities and the 

corresponding correlation coefficient bar plot are displayed. (B) Same as (A), but at 

passive viewing task. 
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Data and Code Availability  

This study utilized publicly available datasets from OpenNeuro: Experiment 1 

(https://doi.org/10.18112/openneuro.ds004357.v1.0.1) and Experiment 2 

(https://doi.org/10.18112/openneuro.ds003885.v1.0.7). Code is publicly available at 

https://osf.io/xu2he/ 
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