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High-density Electroencephalography (EEG) recording enhances spatial resolution for neural signal 
decoding, yet the relationship between electrode density and decoding performance remains unclear. 
To address this, we systematically investigated decoding accuracy across electrode configurations 
of varying densities (16, 32, 64, 96, and 128 electrodes) using visual grating stimuli characterized by 
orientation, contrast, spatial frequency, and color. As expected, decoding accuracy increased with 
electrode density. Remarkably, however, reliable above-chance decoding was still achieved with as few 
as 16 electrodes, highlighting the robustness of decodable neural signals. To test the generalization 
of these results to more complex natural stimuli, we conducted a similar analysis with a diverse 
set of naturalistic images categorizable into living/non-living and moving/non-moving. The results 
consistently showed that effective decoding persists even with a 16-electrode configuration, showing 
robust decoding efficacy even for complex naturalistic stimuli. These findings demonstrate both the 
benefits of higher-density EEG and the robustness of neural decoding under sparse spatial sampling, 
providing new insights into how efficiently and broadly neural signals can be decoded.
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Electroencephalography (EEG) is a widely used non-invasive technique with high temporal resolution that 
has become a valuable tool for neuroimaging studies1. In particular, it is extensively used in visual studies to 
investigate cognitive processes such as object recognition, spatial attention, working memory, and motion 
perception2–7. Numerous studies using diverse visual stimuli, from simple gratings to natural scenes, suggest 
that EEG signals encode rich information about both low- and high-level visual representations4–7.

Despite these versatile neural representations across stimulus types, the extent to which the number of 
electrodes affects decoding performance remains controversial8–10. With the advancement of EEG technology, 
the number of electrodes used in recording has steadily increased, leading to the development of high-density 
EEG systems. Generally, these systems offer enhanced spatial resolution and improved neural signal decoding 
capabilities10–12. However, this does not mean that lower-density EEG cannot support meaningful decoding. 
Recent studies have suggested that image classification, image reconstruction, and functional connectivity 
analysis may still be feasible using low-density EEG, challenging the assumption that more electrodes necessarily 
yield accurate decoding performance8,9,13.

From a neurophysiological perspective, this possibility is supported by the biophysical properties of EEG. 
Although EEG signals originate from anatomically localized sources, such as early visual areas in the occipital 
cortex involved in encoding low-level features14, the resulting scalp potentials are shaped by volume conduction, 
which causes neural activity to spread through the brain and skull. This process produces spatially widespread 
but locally enhanced scalp fields15–18. As a result, sparse but broadly distributed EEG montages, when designed 
to preserve full-head coverage, may still capture the key components of multivariate signal patterns, allowing 
even low-density electrode configurations to retain sufficient information for reliable decoding8,9,13,19.

Moreover, deploying high-density EEG is associated with several limitations, including high costs, extensive 
setup time, lack of portability, and substantial computational demands8,9,13. In contrast, low-density EEG has 
been shown to be effective in brain-computer interface (BCI) applications, particularly among individuals with 
motor disabilities20. In clinical practice, especially in epileptology, low-density EEG is routinely used, with 9 to 
21 electrodes commonly employed for diagnostic purposes21,22. These observations raise a critical question: can 
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comparable decoding performance be achieved with a reduced number of electrodes, thereby making EEG-
based decoding more practical and widely accessible?

To address this issue, we systematically investigated the impact of electrode density on visual decoding 
performance. Using a publicly available EEG dataset23 featuring visual grating stimuli varying in orientation, 
contrast, spatial frequency, and color, we examined decoding accuracy across electrode configurations of 
different densities (16, 32, 64, 96, and 128 electrodes). As expected, decoding accuracy increased with electrode 
density. Remarkably, however, reliable above-chance decoding was still achieved with as few as 16 electrodes, 
highlighting the robustness of decodable neural signals. To assess the generalizability of these results, we 
extended our analysis to a diverse set of natural images from another publicly available EEG dataset24. This 
dataset included visual image categories such as living animals (whales), living plants (flowers), non-living 
moving artificial objects (trains), non-living moving natural objects (waterfalls), non-living still artificial objects 
(cups), and non-living still natural objects (rocks). Using these natural stimuli, we again found that decoding 
performance remained robust even with as few as 16 electrodes, suggesting that high-level visual information 
can also be reliably captured with low-density EEG. The consistency of decoding performance across these 
varied stimulus reveal that while higher-density EEG improves decoding performance, reliable neural decoding 
can still be achieved with sparse electrode configurations, underscoring the efficiency and generalizability of 
neural signal representations.

Methods
This study utilized publicly available datasets from OpenNeuro: Experiment 1 ​(​​​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​8​1​1​2​/​o​p​e​n​n​
e​u​r​o​.​d​s​0​0​4​3​5​7​.​v​1​.​0​.​1​​​​​) and Experiment 2 (https://doi.org/10.18112/openneuro.ds003885.v1.0.7). In Experiment 
1, participants were presented with oriented grating stimuli, shown for one frame (16.67 ms) in sequences at 
6.67 Hz (133 ms inter-stimulus interval, ISI; 150 ms stimulus onset asynchrony, SOA) or 20.00 Hz (33 ms ISI; 50 
ms SOA), and were asked to fixate on a black bullseye and detect when the fixation bullseye changed to a filled 
circle target23. In Experiment 2, participants performed a categorization task with natural stimuli, classifying 
images based on the criterion “whether they are alive or not,” as well as a passive viewing task, during which 
they viewed stimuli presented in rapid streams24. To investigate how electrode density influences decoding 
performance, we reanalyzed the 128-channel electroencephalography (EEG) data from both experiments using 
different standard electrode density configurations (16, 32, 64, 96, and 128 electrodes; Fig. 1; Supplementary 
Table 1). We applied the exact analysis pipelines from the original studies to the reduced configurations, and 
summarize these analysis pipelines below.

Participants
The analyses in this study were based on publicly available EEG datasets originally collected at the University 
of Sydney. The original experiments were conducted under University of Sydney ethics committee approvals, 
and informed written consent was obtained from all participants. Experiment 123 involved 16 participants (11 
females and 5 males, age range: 18–27 years), while Experiment 224 included 24 participants (15 females and 9 
males, age range: 18–26 years).

Apparatus
In Experiment 1, stimuli were presented centrally with a visual angle of 6.5°, while in Experiment 2, the 
visual angle was approximately 5°. In both experiments, EEG data were recorded while participants viewed 
experimental stimuli presented on a monitor with a 60 Hz refresh rate. Recordings were acquired at a sampling 
rate of 1000 Hz using a 128-channel BrainVision ActiCap system (Brain Products GmbH). Electrode placement 
followed standard scalp configuration guidelines, using the international 5% system in both experiments25. EEG 
signals were referenced online to FCz.

Stimuli
Both original experiments utilized well-documented stimulus sets. As described in the original study, the stimuli 
in Experiment 123 consisted of 256 oriented sinusoidal gratings generated using the GratingStim function in 
PsychoPy26. Each stimulus subtended 6.5° of visual angle and varied systematically along four visual feature 
dimensions: color, spatial frequency, contrast, and orientation (Fig. 2A). Four levels were defined for each feature 
dimension. The four colors were RGB values ([66, 10, 104], [147, 38, 103], [221, 81, 58], [252, 165, 10]) that were 
approximately equidistant in color space, and each was paired with its complementary color. Orientations (22.5°, 
67.5°, 112.5°, 157.5°) were evenly spaced circularly, while spatial frequencies (2.17, 1.58, 0.98, 0.39 cycles/°) and 
contrast values (0.9, 0.7, 0.5, 0.3) were linearly spaced. The resulting stimulus space included all 256 possible 
combinations. To prevent potential confounds related to phase, the phase of each grating was randomly varied 
on each presentation.

The stimuli in Experiment 224, as described in the original study, comprised 400 naturalistic color images 
sourced from publicly available image databases (www.pixabay.com and www.pexels.com) under Creative 
Commons 0 licenses. All images were manually processed by the original authors using GIMP (v2.10.14)27 
to blur identifiable text (e.g., brand names) and were subsequently cropped and resized to approximately 5° 
of visual angle. The images were organized into six semantic categories based on Goldberg and Thompson-
Schill28: animals (bee, cat, dog, dolphin, eagle, horse, lemur, pigeon, tiger, whale) and plants (cactus, clover, fern, 
flower, grass, lemon tree, moss, palm tree, tree, vine), which each included 10 objects. For all other categories, 
still artificial things (bench, clothes peg, headphones, lock, mug), still natural things (cliff, crystal, rock, sand, 
shell), moving artificial things (boat, bus, car, helicopter, train), and moving natural things (fire, hot spring, river, 
waterfall, waves), there were 5 objects. Within each category (e.g., cat, bench), there were 10 different images 
(e.g., cat1, cat2, … cat10). For objects capable of movement, the corresponding images depicted dynamic scenes 
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(e.g., dolphins leaping out of the water, flowing waterfalls; see Fig. 2B), although all stimuli were presented as 
static images. Comprehensive information is provided in Shatek et al.24.

EEG experiment procedure
Neural responses were collected using electroencephalography (EEG) while participants viewed experimental 
stimuli and performed specific tasks, following protocols from the original studies23,24.

Experiment 1
Participants viewed sequences of 256 grating stimuli, each presented for 16.67 ms at either 6.67 Hz (150 ms 
SOA) or 20.00 Hz (50 ms SOA). Each sequence consisted of all 256 stimuli presented in random order, and 80 
sequences were shown in total, with each stimulus repeated 40 times per frequency. A fixation bullseye appeared 
one second before each sequence and remained superimposed throughout. Participants pressed a button when 
the bullseye briefly changed to a filled circle, which occurred 2–4 times per sequence (Fig. 2C).

Experiment 2
Participants completed eight blocks alternating between a categorization task and a passive viewing task. For 
the current reanalysis, only the “alive” category task (2 blocks) and the passive viewing task (4 blocks) were 
included. To balance trial numbers across the six natural stimulus categories: living animals (whales), living 
plants (flowers), non-living moving artificial objects (trains), non-living moving natural objects (waterfalls), 
non-living still artificial objects (cups), and non-living still natural objects (rocks), half of the animal and plant 
trials were randomly selected.

For our reanalysis, in the “alive” task, 1200 trials (200 trials for each category) were divided into 10 sequences, 
each containing 120 trials, with 20 trials from each category. Each trial consisted of a fixation cross for a random 
duration between 500 ms and 1000 ms, followed by an image in the center of the screen for 100 ms. Participants 
had 1000 ms to judge whether the image depicted a living object. A response was confirmed by the fixation cross 
filling in; otherwise, the screen displayed “Too late!” (Fig. 2E). Similarly, in the passive viewing task, 3600 trials 
(600 trials per category) were divided into 10 sequences of 360 trials, each containing 60 trials per category. Each 
trial consisted of a 100 ms image presentation followed by a 50 ms inter-stimulus interval. Participants were 

Fig. 1.  Electrode channel layouts for each electrode density configuration. Schematic layout of the 128-channel 
EEG montage with subsets used for different electrode density configuration. Colored electrodes indicate 
the five density levels: 16 channels (red), 32 channels (red and yellow), 64 channels (red, yellow and blue), 96 
channels (red, yellow, blue and magenta), and 128 channels (red, yellow, blue, magenta and cyan). Subsets were 
selected to follow standard low-density EEG configurations and were evenly distributed across the scalp. The 
black electrode indicates the hard-wired ground (Gnd), and the blue with a yellow outline electrode indicates 
the reference channel (Ch64).
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Fig. 2.  Experimental paradigm for Experiments 1 and 2. Sample stimuli are shown in (A) for Experiment 1 
and (B) for Experiment 2. In Experiment 1 (C), visual grating stimuli were presented for one frame (16.67 ms) 
at 6.67 Hz (133 ms ISI; 150 ms SOA) or 20.00 Hz (33 ms ISI; 50 ms SOA). Participants were asked to detect 
when the fixation bullseye changed to a filled circle target and respond using a button press. In Experiment 
2, during passive viewing trials (D), participants viewed a rapid stream of natural images and responded 
by pressing a button when the fixation spot changed to red. During categorization trials (E), participants 
categorized images based on whether each depicted something alive or not alive. Note that all images are 
magnified here for clarity; in the actual presentation, they occupied a smaller proportion of the screen. Panels 
(A) and (C) are adapted from Grootswagers et al.23, while Panels (B), (D), and (E) are adapted from Shatek et 
al. 24.
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instructed to monitor a fixation bullseye and respond by pressing a button whenever it changed color to red 
(Fig. 2D). For further procedural details, see Shatek et al.24.

EEG data analysis
EEG preprocessing
Preprocessed EEG data were obtained directly from the original datasets. As described in the source 
publication23,24, signals had been re-referenced to the average reference, low-pass filtered at 100 Hz, high-pass 
filtered at 0.1 Hz, and down-sampled to 250 Hz. Epochs were constructed from 100 ms prior to 600 ms after each 
image presentation for Experiment 1, and from 300 ms before each stimulus appeared on the screen to 1000 ms 
after stimulus onset for Experiment 2. No further preprocessing steps were applied.

Stimulus decoding
To examine the effect of electrode density on decoding performance, we performed time-resolved multivariate 
pattern analysis (MVPA)29 on preprocessed EEG data using CoSMoMVPA30 in MATLAB. Neural responses 
were decoded separately for five electrode density levels (16, 32, 64, 96, and 128 electrodes), obtained by 
sampling subsets from the original 128-channel montage (Fig. 1; Supplementary Table 1). Standard electrode 
configurations commonly used in low-density EEG systems were followed, ensuring that subsets were evenly 
distributed across the scalp.

 In Experiment 1, for each electrode density level, we decoded EEG epochs elicited by grating stimuli 
varying across four visual features: orientation, contrast, spatial frequency, and color (each with four levels). In 
Experiment 2, we decoded six natural image categories: living animals (whales), living plants (flowers), non-
living moving artificial objects (trains), non-living moving natural objects (waterfalls), non-living still artificial 
objects (cups), and non-living still natural objects (rocks). At each time point of each epoch, voltage values across 
all electrodes within a given subset were concatenated into a feature vector, such that each sample corresponded 
to the multivariate scalp pattern of one trial at one time point. Regularized linear discriminant analysis (LDA) 
classifiers were trained and tested using a leave-one-sequence-out cross-validation procedure. For each fold, 
classifiers were trained on data from all but one sequence and tested on the held-out sequence, cycling through 
all sequences. Classification was performed separately for each visual feature at each stimulus presentation rate 
in Experiment 1, and for each task in Experiment 2, across all time points and electrode density levels. Decoding 
accuracy, defined as the proportion of correctly classified trials, was assessed for each combination of time 
point, feature or category, and electrode density, and compared against theoretical chance levels (0.25 for grating 
features; 0.167 for natural image categories). To summarize decoding performance, we quantified decoding 
strength for each participant as the mean decoding accuracy within the time interval identified as significant by 
Bayes factors (BF) > 10 (see Sect. Statistical inference).

To obtain an estimation of spatial contributions to decoding performance, we performed a channel-
searchlight analysis. For each EEG channel, we selected the nearest 4 neighbouring channels and performed the 
same decoding analysis as above, storing the accuracy at the centre channel, obtaining a time-varying spatial 
map of cross-validated decoding accuracies for each participant.

Statistical inference
To statistically assess whether group-level decoding accuracies exceeded chance, we computed Bayes factors 
(BF)31–33 using the Jeffreys–Zellner–Siow (JZS) prior with a scale factor of 0.707, as implemented in the 
BayesFactor R package34 and its corresponding implementation for time-series neuroimaging data33. The null 
hypothesis was defined as decoding at chance level (0.25 in Experiment 1; 0.167 in Experiment 2), and the 
alternative hypothesis prior was an interval ranging from small effect sizes to infinity, accounting for small 
above-chance results as a result of noise31,33. A BF quantifies the relative evidence for the alternative compared 
to the null, with BF > 10 interpreted as strong evidence for above-chance decoding following established 
conventions35,36.

The onset of above-chance decoding was defined as the first of three consecutive time points with BF > 10. 
To be able to compare onset and peak times, we calculated 95% confidence intervals by using a leave-two-
participants-out jackknifing approach37,38, where we calculated the onset and peak for all possible leave-two-out 
permutations (n = 120 for 16 participants in Experiment 1 and n = 276 for 24 participants in Experiment 2), and 
took the 95th percentile of the resulting distributions.

To assess the effect of electrode density on decoding strength, we fitted linear mixed-effects models (LMMs) 
with electrode density as a continuous predictor and participant as a random intercept.

	 yij = β 0 + β 1 · Densityi + uj + ϵij

where yij ​ denotes the decoding strength for participant j at density level i, β 0​ is the intercept, β 1 is the fixed 
effect of electrode density, uj ​ is the participant-specific random intercept, and ϵij ​ is the residual error term.

Results
To address how electrode density influences decoding performance, we systematically examined decoding 
accuracy across five electrode configurations (16, 32, 64, 96, and 128 channels) while decoding four levels of 
low-level visual grating features (orientation, contrast, spatial frequency, and color) in Experiment 1, and high-
level natural image categories spanning six semantic classes in Experiment 2.
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Dynamic visual grating feature coding
Using multivariate pattern analysis (MVPA), we decoded feature-specific information for orientation, contrast, 
spatial frequency, and color at 6.67 Hz across electrode densities from 16 to 128 channels (Fig. 3A-D, top panel). 
Bayes factors (BF), shown below the head maps (Fig. 3A-D, middle panel), provided strong evidence for above-
chance decoding (BF > 10) across all features and electrode configurations, indicating that even the sparsest 
16-channel montage was sufficient to capture feature-specific neural signals. To evaluate decoding sensitivity 
across electrode configurations, decoding strength was quantified for each participant as the mean decoding 
accuracy within the BF-defined significant interval (BF > 10). Linear mixed-effects models, with electrode density 
as a continuous predictor and participant as a random intercept, revealed robust positive effects of electrode 
density on decoding strength for orientation (β = 2.34 × 10⁻⁵, p < 0.001), spatial frequency (β = 7.80 × 10⁻⁵, 
p < 0.001), color (β = 2.84 × 10⁻⁵, p < 0.001), and contrast (β = 7.10 × 10⁻⁵, p < 0.001). These results indicated that 
decoding strength increased systematically with electrode density across all stimulus features, yet all effects were 
observed on top of uniformly above-chance decoding across densities.

We next examined temporal consistency across electrode densities. Group-level decoding onset, defined as 
the earliest time point with three consecutive samples exceeding a Bayes factor of 10, consistently emerged 
rapidly after stimulus onset, with peak latencies clustering around 100–120 ms across all electrode configurations 
(Supplementary Table 2). Moreover, pairwise correlations of decoding time courses across densities revealed 
extremely high consistency, with the minimum correlation between the 16-channel montage and higher-density 
configurations exceeding r = 0.916 (orientation: 0.916; spatial frequency: 0.995; color: 0.992; contrast: 0.994; all 
p < 0.001; Fig. 3A-D, bottom panel). Finally, spatial consistency was assessed using topographical decoding maps. 
For all features, decoding-related activity localized reliably to occipital and parietal regions, with substantial 
spatial overlap across electrode densities (Fig.  3A-D, head maps), indicating stable spatial topographies of 
feature-specific processing.

Together, these findings demonstrate that, despite systematic differences across electrode densities, accurate, 
temporally consistent, and spatially overlapping decoding of multiple visual grating features remains robust, 
underscoring the efficiency of low-density EEG for neural decoding.

Next, we examined whether these findings generalize to a faster presentation rate of 20.00 Hz. Applying the 
same multivariate pattern analyses to stimuli presented at 20.00 Hz, we again observed robust above-chance 
decoding (BF > 10) for all four features across electrode densities, confirming that even sparse montages retained 
reliable feature selectivity (Fig. 4A-D, top and middle panels). Linear mixed-effects models revealed positive 
effects of electrode density for all four features. The effects were robust for spatial frequency (β = 1.35 × 10⁻⁴, 
p < 0.001), color (β = 1.04 × 10⁻⁴, p < 0.001), and contrast (β = 3.36 × 10⁻⁵, p = 0.007), while orientation showed a 
weaker but consistent trend in the same direction (β = 1.10 × 10⁻⁵, p = 0.058). These results indicated that decoding 
strength systematically increased with electrode density, while all four features remained robustly decodable.

Temporal dynamics were preserved across electrode densities. At the group level, decoding onsets consistently 
occurred rapidly and peaks clustered around 96–124 ms across all densities (Supplementary Table 3). Temporal 
profile similarity remained high, with pairwise correlations between the 16-channel montage and higher-density 
configurations exceeding r = 0.814 for orientation, 0.996 for spatial frequency, 0.992 for color, and 0.987 for 
contrast (all p < 0.001; Fig. 4A-D, bottom panel). Finally, topographical decoding maps again localized feature-
selective activity to occipital–parietal regions with substantial overlap across densities (Fig. 4A-D, head maps).

Together, these findings demonstrate that decoding performance remains robust across electrode densities 
under both moderate (6.67 Hz) and accelerated (20.00 Hz) stimulation, supporting the reliability and efficiency 
of low-density EEG for feature-specific neural decoding.

Dynamic natural stimuli coding
We next examined whether the decoding consistency across electrode densities extends to high-level, naturalistic 
visual input. To test this, we applied the same multivariate pattern analysis to EEG data collected during the 
viewing of natural images from six semantic categories: living animals (whales), living plants (flowers), non-living 
moving artificial objects (trains), non-living moving natural objects (waterfalls), non-living still artificial objects 
(cups), and non-living still natural objects (rocks). Analyses were conducted separately for the categorization 
task (Fig. 5A) and the passive viewing task (Fig. 5B), across five electrode densities (16, 32, 64, 96, and 128 
channels).

For the categorization task (Fig.  5A), decoding accuracy for object category was reliably above chance 
(BF > 10) across all electrode densities (Fig.  5A, top and middle panels). To assess how electrode density 
modulated sensitivity, we quantified decoding strength for each participant as the mean accuracy within the 
BF-defined significant interval. Linear mixed-effects modelling, treating electrode density as a continuous 
predictor, revealed a clear positive association between density and decoding strength (β = 5.59 × 10⁻⁵, p < 0.001). 
Despite this density-dependent gain, the temporal dynamics were highly consistent across montages: decoding 
emerged rapidly post-stimulus and peaked between ~ 220 ms (Supplementary Table 4). In addition, temporal 
profile similarity was extremely high, with pairwise correlations between the 16-channel montage and higher-
density configurations exceeding r = 0.973 (p < 0.001; Fig. 5A, bottom panel). Finally, topographical decoding 
maps localized categorical information to occipital–parietal regions, showing substantial spatial overlap across 
densities (Fig. 5A, head maps) and indicating a robust spatiotemporal signature of categorical processing.

For the passive viewing task (Fig. 5B), decoding accuracy was again reliably above chance across all electrode 
densities. Linear mixed-effects models likewise revealed a significant positive effect of electrode density on 
decoding strength (β = 6.47 × 10⁻⁵, SE = 9.28 × 10⁻⁶, t(118) = 6.97, p < 0.001). Time courses were broadly similar 
across montages, with decoding rising rapidly after stimulus onset and peaking around ~ 230 ms (Fig. 5B, top 
and middle panels; Supplementary Table 4). Pairwise correlations confirmed high temporal consistency, with the 
minimum correlation between the 16-channel montage and higher-density configurations exceeding r = 0.975 
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Fig. 3.  Dynamics of visual coding for orientation, spatial frequency, color, and contrast at a 6.67 Hz stimulus 
presentation rate with varying electrode density. (A) The time course of decoding accuracy for orientation 
with varying electrode density at a 6.67 Hz presentation rate. Confidence intervals for the onsets and peaks 
of individual electrode densities are plotted above the decoding traces. The head maps illustrate the channel 
clusters with the highest feature information at the peak of decoding, based on results from a channel 
searchlight analysis. Bayes Factors for classification evidence compared to chance (0.25) are plotted below: 
grey denotes evidence for the null (BF < 0.1), white denotes inconclusive evidence (0.1 ≤ BF ≤ 10), and colored 
denotes strong evidence for above-chance decoding (BF > 10). In the bottom row, the correlation coefficient 
matrix across different electrode densities and the corresponding correlation coefficient bar plot are displayed. 
(B–D) Same as (A), but for spatial frequency (SF; B), color (C), and contrast (D).
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Fig. 4.  Dynamics of visual coding for orientation, spatial frequency, color, and contrast at a 20.00 Hz stimulus 
presentation rate with varying electrode density. (A) The time course of decoding accuracy for orientation 
with varying electrode density at a 20.00 Hz presentation rate. Confidence intervals for the onsets and peaks 
of individual electrode densities are plotted above the decoding traces. The head maps illustrate the channel 
clusters with the highest feature information at the peak of decoding, based on results from a channel 
searchlight analysis. Bayes Factors for classification evidence compared to chance (0.25) are plotted below: 
grey denotes evidence for the null (BF < 0.1), white denotes inconclusive evidence (0.1 ≤ BF ≤ 10), and colored 
denotes strong evidence for above-chance decoding (BF > 10). In the bottom row, the correlation coefficient 
matrix across different electrode densities and the corresponding correlation coefficient bar plot are displayed. 
(B–D) Same as (A), but for spatial frequency (SF; B), color (C), and contrast (D).
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(p < 0.001; Fig.  5B, bottom panel). Spatial decoding maps again revealed occipital–parietal localization with 
strong overlap across electrode densities (Fig.  5B, head maps), demonstrating a stable spatial topography of 
category-related activity.

Together, these findings demonstrate that high-level visual information can be accurately and consistently 
decoded from EEG signals even with sparse electrode configurations. While denser montages confer advantages 
in decoding performance, the overall robustness across densities highlights the utility of low-density EEG for 
decoding complex, naturalistic stimuli.

Discussion
In this study, we systematically examined how varying EEG electrode densities influence neural decoding 
performance for both low-level (Experiment 1) and high-level (Experiment 2) visual stimuli. As expected, 
decoding performance increased with electrode density. Remarkably, however, temporal decoding accuracy 
remained above chance even with as few as 16 electrodes, irrespective of stimulus complexity or task demands. 
Moreover, spatial patterns of decoding-related activity were broadly consistent across densities, indicating a 
degree of spatial robustness. Together, these findings underscore both the benefits of higher-density recordings 
and the reliability and generalizability of EEG-based neural decoding under sparse spatial sampling conditions.

Prior studies have suggested that increasing EEG electrode density enhances decoding accuracy, particularly 
for fine-grained perceptual tasks10–12, a pattern consistent with our findings. At the same time, recent studies 
suggest that reliable decoding can still be achieved with fewer electrodes8,9,13,39. However, these studies were 
limited in scope, focusing on dense grids over the occipital cortex8, resting-state functional connectivity13, or 

Fig. 5.  Dynamics of visual coding for natural stimuli at categorization and passive viewing tasks with varying 
electrode density. (A) The time course of decoding accuracy at categorization task with varying electrode 
density. Confidence intervals for the onsets and peaks of individual electrode densities are plotted above the 
decoding traces. The head maps illustrate the channel clusters with the highest categorical information at 
the peak of decoding, based on results from a channel searchlight analysis. Bayes Factors for classification 
evidence compared to chance (0.167) are plotted below: grey denotes evidence for the null (BF < 0.1), white 
denotes inconclusive evidence (0.1 ≤ BF ≤ 10), and colored denotes strong evidence for above-chance decoding 
(BF > 10). In the bottom row, the correlation coefficient matrix across different electrode densities and the 
corresponding correlation coefficient bar plot are displayed. (B) Same as (A), but at passive viewing task.
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motor imagery BCIs9,39, rather than systematically varying electrode density across the whole brain in visual 
paradigms. To our knowledge, the present study is the first to directly compare neural decoding across multiple 
standard electrode configurations within the same visual tasks. By examining both low- and high-level visual 
stimuli, our results extend previous findings and provide systematic evidence that decoding accuracy and 
temporal dynamics remain robust even under sparse spatial sampling.

Although task-state EEG signals originate from anatomically localized sources, such as early visual areas in 
the occipital cortex involved in encoding low-level features14,40, they give rise to scalp potentials that are both 
locally enhanced and spatially distributed due to volume conduction15–18. Specifically, neural activity from focal 
sources propagates through the brain and skull, producing widespread scalp fields that extend well beyond the 
cortical origin. At the same time, these fields tend to exhibit maximal amplitude near their generating sources, 
which explains the consistently observed topography maps over occipital regions in Experiment 1. This dual 
property of EEG, global spread with regional specificity, enables sparse but widely distributed electrode arrays 
to capture the key components of multivariate signal patterns8,9,13. As long as the electrode montage ensures 
full-head coverage, even low-density configurations can retain sufficient information for effective decoding. Our 
findings support this principle: despite substantial reductions in electrode count, we observed reliable decoding 
of both temporal dynamics and spatial structures, across both low- and high-level visual tasks.

The visual tasks in this study employed rapid serial visual presentation (RSVP) paradigms, which are widely 
used to approximate the continuous nature of visual processing41–46. A potential concern is that this design may 
introduce overlap between consecutive epochs. However, all analyses were strictly time-locked to stimulus onset, 
and any overlapping activity would be equally distributed across conditions because trials were randomized. 
Thus, potential contributions from subsequent stimuli are unlikely to systematically bias the reported decoding 
accuracy. In addition, we also found several patterns in visual decoding performance that echo previous 
studies23,24. Firstly, in Experiment 1, orientation decoding was relatively low (though reliable) compared to other 
visual features (Figs. 3 and 4) no matter in which electrode density level. Similar results have been reported 
previously, where EEG shows weaker orientation decoding while MEG reveals stronger signals47,48. Although 
our design was highly powered (2,560 events per orientation angle), the exclusion of cardinal and oblique 
orientations likely reduced sensitivity48. Moreover, features such as color, contrast, and spatial frequency evoke 
stronger and more distributed responses (e.g., high contrast drives robust signals49), which are easier to detect 
at the scalp. In contrast, orientation information may be downweighted at higher levels of visual processing 
because robust object perception requires rotational invariance50,51. This may explain why orientation decoding 
is weaker relative to other features, despite its importance for local edge and shape detection. Secondly, decoding 
accuracy was lower in the 20.00 Hz (Fig. 4) compared to the 6.67 Hz (Fig. 3) condition, despite overall similar 
temporal dynamics. We interpret this reduction as arising from decreased signal-to-noise ratio at higher 
presentation rates. A similar pattern was observed in Experiment 2, where decoding accuracy was lower in the 
passive viewing than in the categorization task, which can likewise be attributed to reduced task engagement and 
thus lower signal-to-noise ratio. Thirdly, low-level feature coding exhibited a pronounced double-peak response 
(Figs.  3 and 4), with an early peak around 90–130 ms and a later peak around 160–200 ms corresponding 
to the P100 and N1/N170 components. These likely reflect distinct feedforward and feedback stages of visual 
processing, consistent with previous EEG decoding studies4,6,50. In contrast, high-level tasks (Fig. 5) such as 
categorization and passive viewing showed more sustained decoding with later onset and latency. This pattern 
suggests that while early visual features are processed rapidly through feedforward mechanisms, higher-level 
representations may depend more on recurrent processing and feedback, supporting prolonged and temporally 
extended decoding23,24. Importantly, these neurophysiological trends were robust across electrode density levels, 
supporting the broader conclusion that reliable visual decoding of both low- and high-level processes can be 
achieved even with reduced electrode coverage.

A key strength of this study lies in the systematic manipulation of electrode density across two distinct 
experimental datasets, which provides robust validation of the findings. While this approach provides robust 
validation under realistic recording conditions, it does not address the potential benefits of optimizing electrode 
placement for individual participants or specific tasks. Future studies could explore individualized electrode 
selection strategies, such as identifying the most informative channels based on subject-specific signal-to-noise 
ratios, decoding performance, or task-related activation patterns8,39, to further enhance the efficiency of low-
density EEG systems. Another promising direction for future work is to investigate whether decoding based on 
narrowband signals, such as alpha power, yields comparable results to broadband approaches. Numerous studies 
suggest that alpha-band signals can carry robust information about visual stimuli and attention, particularly 
under conditions that allow for sustained neural engagement52,53. Alpha oscillations and their lateralization can 
be reliably induced by visual stimulation54, and have also been shown to be evoked by novel visual stimuli55,56. 
Therefore, future studies employing longer stimulus durations or tasks requiring sustained attention could 
directly test the added value of frequency-specific features in decoding performance.

Our results demonstrated that reliable decoding can be achieved with fewer electrodes, which supported the 
broadly distributed activities across the whole brain and opened new possibilities for scalable applications such 
as mobile BCIs, clinical monitoring, and real-world cognitive assessment46,57–59. These findings carry important 
implications for the development of portable and cost-effective EEG systems.

Data availability
This study utilized publicly available datasets from OpenNeuro: Experiment 1 ​(​​​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​8​1​1​2​/​o​p​e​n​n​
e​u​r​o​.​d​s​0​0​4​3​5​7​.​v​1​.​0​.​1​​​​​) and Experiment 2 (https://doi.org/10.18112/openneuro.ds003885.v1.0.7). Code is ​p​u​b​l​i​c​
l​y available at https://osf.io/xu2he/.
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