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Abstract 8 

Transforming sensory inputs into meaningful neural representations is critical to adaptive behaviour 9 

in everyday environments. While non-invasive neuroimaging methods are the de-facto method for 10 

investigating neural representations, they remain expensive, not widely available, time-consuming, 11 

and restrictive in terms of the experimental conditions and participant populations they can be used 12 

with. Here we show that movement trajectories collected in online behavioural experiments can be 13 

used to measure the emergence and dynamics of neural representations with fine temporal 14 

resolution. By combining online computer mouse-tracking and publicly available neuroimaging (MEG 15 

and fMRI) data via Representational Similarity Analysis (RSA), we show that movement trajectories 16 

track the evolution of visual representations over time. We used a time constrained face/object 17 

categorization task on a previously published set of images containing human faces, illusory faces and 18 

objects to demonstrate that time-resolved representational structures derived from movement 19 

trajectories correlate with those derived from MEG, revealing the unfolding of category 20 

representations in comparable temporal detail (albeit delayed) to MEG. Furthermore, we show that 21 

movement-derived representational structures correlate with those derived from fMRI in most task-22 

relevant brain areas, faces and objects selective areas in this proof of concept. Our results highlight 23 

the richness of movement trajectories and the power of the RSA framework to reveal and compare 24 

their information content, opening new avenues to better understand human perception. 25 

 26 

  27 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 16, 2023. ; https://doi.org/10.1101/2023.03.15.532848doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532848
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 28 

The human brain’s astounding capacity for transforming sensory input into meaningful mental 29 

representations enables our adaptive behaviour in complex and continuously changing environments. 30 

While this capacity is now being increasingly investigated using neuroimaging, we show in this study 31 

that low-cost and widely available behavioural measures, human movement trajectories in particular, 32 

remain incredibly valuable to gain insight into the dynamics of emerging neural representations. 33 

Indeed, behavioural measures, such as reaction time and eye-tracking, have been for decades our 34 

main window into mental representations enabling gaining critical understanding of human cognition 35 
1–5. The use of computer mouse-tracking movement trajectories is a more recent development in the 36 

behavioural toolbox 6–9. Mouse-tracking involves the continuous tracking of cursor trajectories 37 

towards one out of two or multiple choices, which has been found to be especially useful for 38 

measuring non-explicit processes such as self-control, emotion, ambivalence, moral and subliminal 39 

cognition10–14. Most importantly, movement trajectories have been proposed to inform not only about 40 

the end point of decisional processes, but also the temporal dynamics of decisions, revealing the 41 

emergence and duration of underlying neural representations 6,9,15–17. 42 

However, the extent to which movement trajectories can index the continuous unfolding of 43 

cognitive processes, and more specifically, the transformation of visual inputs into meaningful neural 44 

representations, remains controversial 18. It is still highly debated whether movements, especially 45 

when performed under time constrains, can be modified by cognition once their execution has 46 

started. There are indeed studies suggesting that certain changes in trajectory might not be visually 47 

informed 19, that early visual perception might not be accessible by cognition 20, that the variability of 48 

movement outcomes might be mainly related to preparatory (pre-movement) neural activity 21,22, and 49 

that only single motor plans (i.e., a single choice, instead of competition among choices) would be 50 

represented in the motor cortex 23, thus challenging the hypothesis that the time-course of emerging 51 

neural representations can be captured via movement trajectories. 52 

By combining movement trajectories and neuroimaging data, we show in this study that 53 

movement trajectories can provide a sensitive index of dynamic of neural representations. We show 54 

that observers’ mouse trajectories reveal the time course of decisional processes, capturing 55 

information about early visual representations and following their evolution (albeit delayed) towards 56 

their final stable state, instead of only reflecting the end product of decisional processes (i.e., a button 57 

press). We used publicly deposited neuroimaging data from Wardle et al. (2020) 24 which explored the 58 

time-course and brain areas supporting illusory face representations (face pareidolia). This 59 

phenomenon occurs when non-face stimuli elicit face perception due to their face-like visual features 60 
25,26. Using images of human faces, pareidolic objects and non-pareidolic objects in combination with 61 

Magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI), the 62 

aforementioned study revealed that illusory face representations emerge in earlier stages of visual 63 

processing, being resolved as objects later on. Using Representational Similarity Analysis (RSA), we 64 

compared these previously published neuroimaging data with mouse-tracking data we collected in an 65 

online face vs. object categorization task. We show that representational structures derived from 66 

movement trajectories matched those derived from MEG, following their temporal dynamics, albeit 67 

delayed. Furthermore, movement trajectories representational structures were found to be especially 68 

concordant with those derived from face and object selective brain areas as revealed by fMRI. Our 69 

results show that movement trajectories capture representational dynamics by reflecting individual 70 

stimuli differences, including their earlier visual processing stages, demonstrating decisive advantages 71 

over other behavioural measures focused on the end point of decisional processes only.  72 

 73 
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Results 74 

We recorded mouse trajectory data from a group of 77 online observers as they performed a 75 

face vs. object categorization task on the stimuli from Wardle et al. (2020) 24 (Figure 1A). To encourage 76 

participants to begin their classification movement early, each trial automatically terminated 800ms 77 

after stimulus presentation, or else when the participant clicked on a response box. Despite this time 78 

constraint, analysis of mouse trajectory endpoints showed that participants were highly accurate in 79 

categorising all three image categories (85.3, 80.68 and 82.36% for faces, pareidolic objects, and 80 

objects, respectively). Category information contained in trial-by-trial trajectories (see single trial 81 

examples in Figure 1B) was also reflected in conditional mean horizontal cursor position (Figure 1C): 82 

Trajectories corresponding to face and object images diverged from each other soonest (from 325ms), 83 

followed by those for faces and pareidolic objects (from 330ms). Trajectories corresponding to 84 

pareidolic objects and normal objects separated comparatively later (from 375ms) (p 85 

<.05; paired t-tests, FDR-corrected, q=0.05), with pareidolic object trajectories showing more 86 

attraction towards the face response box between 300-800ms (Figure 1C, inset). Note participants 87 

showed a slight initial bias towards responding ‘face’ (see Figure 1C&E), which could be caused by 88 

several factors (e.g., specialised face processing or treating it like a face vs not-face task), but this bias 89 

does not influence our analyses as we only examined relative position differences across exemplars. 90 

Our primary goal was to examine the degree of representational overlap between our 91 

movement trajectory data and existing neuroimaging data for the same stimuli. We used 92 

Representational Similarity Analysis (RSA) 27 to abstract away from the native measurement units for 93 

these different datasets, projecting category distinctions reflected in MEG signals and horizontal 94 

position mouse trajectory data into the information domain via representational dissimilarity matrices 95 

(RDMs). Since the horizontal x-axis is the relevant dimension of categorization in our paradigm (i.e. go 96 

left for faces, go right for objects), the RDM series derived from time-resolved x-position data enables 97 

us to evaluate the emergence of category representations reflected in the unfolding movement 98 

trajectory (Figure 1D). We constructed these by calculating the pairwise trajectory distance along the 99 

x-axis (in pixels) between images for every time point (See Methods for details).  100 

 101 

 102 
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 105 

Figure 1. Mouse-tracking movement trajectory data. A. Paradigm schematic. We recorded online 106 

observers’ mouse trajectories in a face vs. object categorization task across 96 individual images (32 107 

faces, 32 pareidolic objects and 32 matched objects) as used by Wardle et al. (2020) 24. We added a 108 

further 32 face images to equalise the probability of faces/objects, but did not include these additional 109 

face images for analysis. We instructed participants to only categorize human faces as faces, such that 110 

both pareidolic objects and normal objects had to be categorized as objects. (1) Each trial sequence 111 

began with a central fixation cross and a “Next” button that participants clicked on to initiate the trial. 112 

(2) When the trial commenced, participants first saw a 200ms blank interval to promote readiness for 113 

movement. (3) At time=0, either a face, pareidolic object or matched object appeared at fixation, 114 

along with two response boxes in the upper left and right corners of the screen. All images were 115 

presented once per block, and there were four blocks in total. The positions of the ‘OBJECT’ and ‘FACE’ 116 

response boxes swapped halfway through the experiment (i.e., after two blocks), with their initial 117 

positions counterbalanced across participants to guard against any right/left response biases. (4) 118 

Participants were instructed to move the cursor and click the appropriate response box as fast as 119 

possible, with each trial terminating 800ms after stimulus onset (or on box click). Both cursor landings 120 

and clicks on the correct box were considered as correct trials. Both correct and incorrect trials were 121 
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included in subsequent analyses. B. Individual mouse trajectories. Individual mouse trajectory data 122 

for one block from a representative participant (96 trials). C. Mean horizontal position over time for 123 

each exemplar in each category. We took the horizontal component of the cursor movement (i.e., x-124 

coordinate) as a time-resolved measure of the unfolding categorization response. For each image, we 125 

averaged x-position at each timepoint first within and then across participants (N=77), using these 126 

summary scores for further analyses. Inset: Image-wise deviation from the mean trajectory for objects 127 

and pareidolic objects. To visualise the distinction between object and pareidolic objects more clearly, 128 

we subtracted the grand mean from each image’s mean trajectory between 300 and 800ms (indicated 129 

by the dashed window in the main plot). Trajectories for objects and pareidolic objects separate in 130 

opposite directions, with pareidolic trajectories showing greater attraction towards the ‘FACE’ 131 

response box. Thick lines are the averaged mean-subtracted trajectories for each category. D. 132 

Representational dissimilarity matrices (RDMs) for horizontal position data. RDM for movement 133 

data illustrate the representational structure across tested images based on the categorization 134 

movement data. We constructed the RDM at each timepoint by taking the pairwise difference in pixels 135 

along the horizontal axis between the mean trajectory for each image. This resulted in a 96x96 matrix 136 

with 4186 unique pairwise combinations at each time point from 5-800ms after stimulus onset (step 137 

size = 5ms). RDMs at 300, 400, 500 and 600ms are shown for reference. Dissimilarities are shown as 138 

log2(distance) for display purposes. E. Category distributions of horizontal position. The distributions 139 

of horizontal positions for each object grouped by category are shown as histograms at 300, 400, 500 140 

and 600ms. Faces started to separate from objects and pareidolic objects around 400ms, and remain 141 

separate over time. While the difference between pareidolic objects and objects was smaller than 142 

their difference to faces (given that both pareidolic objects and objects were categorized as objects), 143 

the distributions for pareidolic objects and objects remained offset, with the pareidolic object 144 

distribution indicating differences in their movement trajectory profiles and an attraction effect of 145 

faces over pareidolic.  146 

 147 

Representational similarity between movement trajectories and MEG. In fusion analyses, high 148 

correlational values indicate shared representational structure across experimental measures, 149 

whereas low correlational values indicate rather different representational structures captured by 150 

each measure (Figure 2A). Time-time fusion analyses revealed that movement-derived 151 

representational geometries are comparable to those from MEG24 in both their structure and their 152 

ability to reflect category-specific visual processing among illusory faces, human faces and objects.  153 

To understand how the representations of human faces, pareidolic objects (or illusory faces, we use 154 

the two terms interchangeably), and objects reflected in movement data evolve over time, we focused 155 

our analyses on a subset of the RDMs that best represent the behavioural categorization task: i.e., 156 

faces vs. objects. In practice, this is achieved by selecting the RDM cells that represent dissimilarity 157 

between faces and pareidolic objects, and faces and normal objects (Figure 2B, light grey rectangles). 158 

Fusion analysis for this subset revealed clusters of significant correlation between MEG and movement 159 

representations that were shifted upwards from the diagonal (which represents identical movement 160 

and MEG times). This indicates that category representations reflected in movement trajectories 161 

lagged in time compared to those captured by MEG data. The peak of significant correlation between 162 

the two datasets (defined as the maximum number of significant points projected on each time axis) 163 

was located at 160ms and 540ms on the MEG and movement time axes, respectively.  164 

Time-time fusion analysis for the RDM subset of faces vs. normal objects (Figure 2D) revealed that the 165 

robust neural distinction between faces and objects that arises very early in the MEG response 166 

(135ms) exhibited a sustained representational overlap with our mouse trajectory data between 400 167 
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to 550ms of movement time (peaking at 485ms).  The same time-time fusion focused exclusively on 168 

the subset faces vs. pareidolic objects (Figure 2C) revealed shared representational structure across 169 

the two measures relatively later in time (peaking at 190ms and 610ms on MEG and movement times 170 

axis, respectively). The fact that movement-MEG representational overlap for this subset arises 171 

comparatively later (55 and 125ms in MEG and movement time, respectively) than for faces vs. objects 172 

is highly consistent with Wardle et al.’s 24 original report that maximal decoding arises later for faces 173 

vs. pareidolic objects (~260ms) than for faces vs. normal objects (~160ms).  174 

Movement trajectories vs. explicit ratings. Our results also showed that the information captured by 175 

movement trajectories go above and beyond the information captured by explicit ratings. We tested 176 

how much of the fusions between movement and MEG were explained by explicit face ratings’ RDM 177 

in the original paper 24. These face ratings (face-likeness of each image in a scale from 0 to 10) were 178 

completed by independent observers (N=20) in an online paradigm, see Methods and 24 for details. 179 

Face ratings indeed explained some of the correlations between movement and MEG representational 180 

structures, especially for the subset faces vs. pareidolic objects and objects, where controlled fusion 181 

maps showed more constrained regions of significant correlations (Figure 2B, right). For faces vs. 182 

pareidolic objects and faces vs. objects, fusion controlled maps remained virtually unchanged when 183 

compared to the original ones (Figure 2C-D, right), thus demonstrating that movement captured 184 

distinctly different representational information than face ratings.  185 
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 186 

Figure 2. Representational overlap between movement trajectories and MEG responses. A. MEG-187 

movement fusion. Fusion analysis evaluates the  structural overlap between representations captured 188 

by different brain imaging techniques, behavioural measures and models 28. Here we compared the 189 

representational structures captured by MEG and movement data in a time-resolved manner to 190 

elucidate when these measures represent the stimuli (the 96 images dataset) similarly. RDMs from 191 

MEG data constructed by taking 1-correlation between the MEG activation patterns for each pair of 192 

stimuli (see Methods for details) were compared using Pearson’s correlation to RDMs constructed 193 

using movement data (Figure 1). Rather than computing correlations on the entire RDM, we selected 194 
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parts of the RDM, thus focusing on the representational differences between faces and the rest of the 195 

stimuli as they hold information about the similarities and differences of the representations of faces, 196 

face-like and non-face objects. For each MEG and movement timepoint, we correlated a portion of 197 

the RDMs at each MEG and movement time combination. This produced time-time fusion maps with 198 

MEG time as the x-axis, movement time as the y-axis and the Pearson’s r-value colour-coded. We also 199 

calculated the partial correlations between MEG and movement data controlling for the variance 200 

explained by face ratings RDMs to check whether the representational similarities between the two 201 

could be accounted by simple face ratings (see 24 for details). B. Faces vs. pareidolic objects and 202 

objects. Time-time MEG-movement fusions showed sustained common representational structures 203 

peaking at 160ms and 540ms for MEG and movement times respectively (as the maximum number of 204 

significant time-time points projected into each coordinate). Fusions controlled for face ratings 205 

showed a more restricted pattern of significant correlations peaking at 235ms and 615ms for MEG 206 

and movement data, indicating that some of the correlations between MEG and movement data are 207 

indeed explained by simple face ratings. C. Faces vs. pareidolic. Significant correlations were found to 208 

have a later peak than faces vs. pareidolic objects and objects, starting at 190ms and 610ms for MEG 209 

and movement times. Correlations controlled for face ratings showed virtually unchanged results 210 

compared to the non-controlled maps with significant correlations peaking at 185ms and 615ms for 211 

MEG and movement data, thus indicating that the face ratings do not capture the representational 212 

structure shared by movement and MEG for the face-pareidolic pairs. D. Faces vs. objects. While more 213 

constrained than faces vs. pareidolic objects and objects maps, faces vs. objects maps showed a peak 214 

at 135ms and 485ms of MEG and movement time, noticeably earlier than the faces vs. pareidolic 215 

subset. Fusion maps controlled by ratings showed virtually same results to the non-controlled maps, 216 

with significant correlations peaking at 135 and 480ms. White outlines represent significant 217 

correlations (one-sample t-test against 0, FDR-corrected for multi-comparisons q=0.05, cluster size 218 

threshold=50). Yellow lines represent the sum of significant time-time coordinates projected into each 219 

axis. Triangles represent the part of the RDMs selected (in light grey) for analyses. 220 

 221 

Representational similarity between movement trajectories and fMRI. Remarkably, fusion analysis 222 

with RDMs derived from fMRI data (Figure 3A) revealed that category representations reflected in 223 

movement data had structural overlap with those contained in face and object selective brain regions. 224 

We used representational structures obtained with fMRI from 24 in four category-selective brain areas: 225 

the fusiform face area (FFA), the occipital face area (OFA), the lateral occipital cortex (LO) and the 226 

parahippocampal place area (PPA) (Figure, 3B, see Methods for details on ROI definitions). Fusion 227 

analyses focused on faces vs. pareidolic objects and objects (Figure 3C) revealed that the 228 

representational geometry of faces, pareidolic, and object images as reflected in movement data were 229 

significantly correlated with geometries obtained in FFA (from 310ms of movement time), OFA (from 230 

330ms) and LO (from 415ms), but not in PPA. These results are consistent with the selectivity of FFA, 231 

OFA, and LO brain areas for face and object perception and the role of PPA more oriented towards 232 

scene perception. 233 

The central contribution of FFA was further confirmed while investigating which brain regions shared 234 

common representations with movement and MEG using commonality analysis. Commonality analysis 235 

(Figure 3D) allows to identify the unique variance contribution of a single variable or predictor to the 236 

variance shared among multiple predictors 29,30. This analysis was used to test which brain areas from 237 

FFA, OFA, LO and PPA, contributed the most to the shared variance between movement, MEG and 238 

fMRI (see Methods for details). Commonality analyses revealed significant shared movement-MEG-239 

fMRI representations in FFA, but not in other brain areas (Figure 3E). All in all, these results indicate 240 
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that most of the shared variance between movement, MEG, and fMRI was explained by face-241 

selectiveness in FFA, which is in line with its critical role in face recognition 31,32. 242 

While commonality coefficients in OFA were not statistically significant, the latencies seen for FFA and 243 

OFA commonality maps could reveal temporal dynamics in the emergence of visual representations 244 

in these areas. The similar commonality latencies in OFA and the first responses in FFA could be 245 

interpreted as both areas producing face representations concurrently, thus challenging traditional 246 

posterior-to-anterior increase in visual hierarchy views 33,34, which have been contested by other 247 

studies 35–37. 248 

 249 
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 250 

Figure 3. Representational overlap between movement trajectories and fMRI. A. fMRI-movement 251 

fusion analysis. We compared the representational structures captured by functional magnetic 252 

resonance imaging (fMRI) and movement in four ROI. RDM on each ROI were constructed by taking 1-253 

correlation between the BOLD signal for each pair of stimuli (see Methods for details) and were 254 

correlated (Pearson) to RDMs constructed using movement data. B. Category selective regions. Four 255 

category selective regions were selected from fMRI recordings: the fusiform face area (FFA), the 256 

occipital face area (OFA), lateral occipital (LO) and parahippocampal place area (PPA). These ROIs were 257 

defined in an independent functional localizer experiment for each participant (see 24 for details). Two 258 
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of these regions are selective to faces (FFA and OFA), one to objects (LO) and one to scenes (PPA), 259 

thus FFA, OFA and LO are expected to represent the differences between the stimuli set. Brains and 260 

ROI diagrams were modified from another study of our group and are shown for reference only. C. 261 

Movement-fMRI fusions. Rather than computing correlations on the entire RDM, we selected parts 262 

of the RDM to focus on the representational differences between faces and the rest of the stimuli as 263 

they hold information about the similarities and differences in coding for faces, face-like and non-face 264 

objects (light-grey on the black triangles). For each ROI and movement timepoint, we correlated a 265 

portion of the RDMs from both modalities to produce line plots representing the r-values as a function 266 

of movement time. D. Movement-MEG-fMRI commonality analysis rationale. We used a 267 

commonality analysis to investigate which brain areas shared representational structures with 268 

movement and MEG data. For each fMRI ROI, we calculated the partial correlation between MEG and 269 

movement RDMs when controlled by the variance in ROI=r minus the partial correlation of MEG and 270 

movement RDMs when controlled by the variance in all ROIs. E. Time-time Movement-MEG-fMRI 271 

commonality maps. The x and y axes correspond to MEG and movement time, respectively. The 272 

commonality coefficient (r2) is colour-coded. Commonality analyses showed that FFA significantly 273 

shared representational structures with MEG and movement. Note that commonality coefficients (r2) 274 

are often small in value (see for instance 30,32,38), as there are likely other sources of variance not 275 

accounted for in the models. Therefore, their statistical significance is often considered more 276 

important than their magnitude. Black outline represents significant correlations (one-sample one-277 

tailed Wilcoxon signed rank test against 0, FDR-corrected for multi-comparisons q=0.05, cluster size 278 

threshold=50). Triangles represent the part of the RDMs selected (in light grey) for analyses. 279 

 280 

Discussion 281 

Our results show that movement trajectories can be used to track the time course of unfolding neural 282 

representations, and that they capture representational structure beyond that reflected in 283 

behavioural measures focused on the end point of decisional processes (e.g., stimulus ratings). Our 284 

results also highlight the relevance of the Representational Similarity Analysis (RSA) framework to 285 

reveal the informational content in movement trajectories and compare movement data with other 286 

behavioural and neuroimaging data as well as theoretical models, which opens new avenues to 287 

understand human perception using the mouse-tracking paradigm.  288 

Movement trajectories as a window into emerging neural representations. Our results show that 289 

movement trajectories can be modified by cognition even under high time constraint after their 290 

execution has started. Moreover, classification movements in our study contained meaningful 291 

information about underlying neural representations of stimulus category. It is evidenced in this study 292 

by distinct early parts of movement trajectories for faces, illusory faces, and objects in our face vs. 293 

object categorization task consistent with their differences in early brain processing. Our results show 294 

that time-resolved representational structures derived from movement data were concordant with 295 

the unfolding of category representations measured by MEG as early as 120ms after stimulus 296 

presentation. Fusion analyses revealed a compelling overlap between stimulus representations 297 

reflected in movement and MEG data, with a notable offset between the two measures. The same 298 

representational structures evident in MEG data arise in trajectory data after a delay of some 380ms 299 

(e.g., for faces vs. pareidolic objects and objects). Importantly, fusion analysis with movement and 300 

fMRI data revealed that face, object, and pareidolic object representations derived from movement 301 

trajectory data show strong concordance with representations extracted from the BOLD response in 302 

the most task-relevant brain regions (i.e., regions with selectivity to faces and objects). Functional 303 

MRI-movement fusions indicated significant correlations between movement and FFA, OFA and LO, 304 
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but not with PPA. These areas are selective to faces (FFA and OFA) and objects (LO) 31,39, in contrast to 305 

PPA that is involved in scene perception 40. The central role of FFA was further supported by the 306 

commonality analysis that showed that representational structures in FFA explained the shared 307 

information content between MEG and movement data better than any other brain area tested. 308 

Together, these results demonstrate the suitability of movement trajectories for measuring the time-309 

course of emerging representations in the brain, including their early stages, which opens new 310 

possibilities for disentangling in future research stimulus features and processing stages driving 311 

human perception.  312 

Movement trajectories contain more information than explicit category ratings. Our results show 313 

that movement trajectories captured representational information that goes beyond that reflected in 314 

explicit category ratings. Indeed, when using face ratings from 24 to control the correlations between 315 

movement and MEG, we found that most of the similarities between movement and MEG 316 

representational structures were not explained by face ratings. This result further demonstrates the 317 

capacity of movement trajectories to capture time-course information about neural representations 318 

and their underlying intermediate representational categories. This is consistent with the ability of 319 

mouse-tracking to track non-explicit cognitive processes that otherwise are blurred (or resolved) by 320 

testing them explicitly, as in questionnaires or ratings 10–14,41. Our results support the assumption that 321 

hand movements are continuously updated by the dynamics of competing decisional processes 42,43, 322 

instead of representing their end product as explicit measures do. This property gives mouse-tracking 323 

the ability to reveal the dynamics of cognitive processes occurring in parallel and competing with each 324 

other. Our results also corroborate work linking neural representations to human reaction time 325 

behaviour 44–48and speak to the importance of linking neuroimaging data to behaviour 49–51. The rich 326 

information in movement trajectories may help reveal more subtle links like those between transient 327 

intermediate neural processing stages and early decision processes. Our mouse-tracking approach 328 

could be integrated in future neuroimaging studies to further explore how dynamic neural 329 

representations contribute to decisions. 330 

Representational similarity analysis framework to reveal information in movement trajectories. Our 331 

results underscore the utility of RSA as a powerful framework through which to marry informational 332 

content reflected in distinct behavioural and neuroimaging measures. RSA enables comparing 333 

information in movement trajectories with that in other systems, MEG, fMRI, and rating data in the 334 

present study. Combining mouse-tracking with neuroimaging through RSA has shown to be successful 335 

in previous studies to reveal the influence of specific brain areas in stereotypes 52, cultural-specific 336 

facial emotion and contextual associations 53 and social biases 54, but never before in a time-resolved 337 

manner as presented here. Time-resolved RSA enabled to test in this study similarities over time 338 

between the representational structures of movement trajectories and MEG data, and therefore, 339 

reveal the dynamics of neural representations developing after stimulus presentation. Movement 340 

trajectories combined with RSA offer endless possibilities to address new research questions as this 341 

unit-agnostic approach enables comparing information in movement trajectories with new theoretical 342 

models as well as increasingly available public EEG, MEG, fMRI, fNIRS, EMG and eye-tracking datasets. 343 

Remarkably, re-using public datasets does not necessarily imply asking the same research questions 344 

as the original study. Neuroimaging data from 24 used in the current study could be employed with 345 

new mouse-tracking tasks and/or participant populations to investigate for instance changes in the 346 

representation dynamics of faces, illusory faces and objects with face adaptation 55 and perceptual 347 

deficits 56.  348 

Conclusion. The flexibility and potential to answer a diverse range of questions makes the 349 

combination of mouse-tracking and publicly available neuroimage datasets through RSA a powerful 350 
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choice for agile and accessible science. Mouse-tracking is as time and effort efficient as most explicit 351 

behavioural measures, while revealing more information, specifically the time-course of covert 352 

processes 6,57. Widely available and cost-effective, this method combined with RSA offers new 353 

opportunities to investigate the dynamical processes underlying human perception.  354 

 355 

Methods 356 

Images and neuroimaging data from Wardle et al 2020. We used the dataset from 24 consisting in 96 357 

images (https://osf.io/9g4rz/). This dataset contained 32 human faces (faces), 32 illusory faces 358 

(pareidolic objects) and 32 matched objects (objects). For each illusory face image (pareidolic objects) 359 

a matched object image containing the same inanimate object(s) (although not pareidolic objects) was 360 

used, making these images comparable in their visual attributes. Human faces were also selected to 361 

reflect the high variance of the pareidolic objects and object images, containing different facial 362 

expressions, age, ethnicity, orientation and gender. 363 

MEG, fMRI and explicit rating data was downloaded from the publicly available repository 364 

accompanying their publication at: https://static-365 

content.springer.com/esm/art%3A10.1038%2Fs41467-020-18325-366 

8/MediaObjects/41467_2020_18325_MOESM6_ESM.zip.  367 

Briefly, MEG recordings from 22 participants were acquired using a 160-channel whole-head KIT MEG 368 

system. MEG data were down-sampled to 200Hz and PCA was applied for dimensionality reduction 369 

(retaining PCs explaining 99% of variance). MEG RDMs were constructed by taking 1-correlation 370 

(Spearman) between the MEG activation patterns for each pair of stimuli at each time point (N=221, 371 

from -100 to 1000ms after stimulus presentation). The MEG task consisted in the presentation 372 

(200ms) of the 96 visual stimuli (24 repeats of each stimulus). In each trial, images were tilted by 3° 373 

(left or right) and participants had to report the tilt direction. 374 

Functional MRI recordings from 16 participants were acquired using a 3T Siemens Verio MRI scanner 375 

and a 32-channel head coil. A 2D T2*-weighted EPI acquisition sequence was used: TR= 2.5 s, TE= 376 

32ms, FA= 80°, voxel size: 2.8 × 2.8 × 2.8 mm. The fMRI task was analogous to the MEG task with the 377 

difference that stimuli were presented for 300ms followed by a grey screen to complete a 4s trial. All 378 

stimuli were shown once per run and each participant completed 7 runs. Data were slice-time 379 

corrected and motion-corrected using AFNI. An independent functional localizer experiment using a 380 

different set of images was performed to define the category selective regions: FFA, OFA, LO and PPA. 381 

Functional MRI RDMs were builded by taking 1-correlation (Spearman) between the BOLD signal for 382 

each pair of stimuli (96x96) in each of the four category selective areas. 383 

 384 

Mouse-tracking participants. We tested first year students in psychology from Western Sydney 385 

University online through the SONA platform in exchange of course credits. Participants gave written 386 

informed consent to participate in the study, which was approved by the ethics committee of Western 387 

Sydney University. We tested 128 participants, from which, 109 participants completed the entire 388 

experiment. From these 109 participants, we discarded 17 participants as they had more than half of 389 

trials with no mouse tracking data (either because they chose not to move the mouse or because the 390 

data was unable to be collected by the browser). Further 15 participants were discarded as their 391 

performance was below 50% on the categorization task (possibly due to not performing the task). In 392 
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total, datasets from 77 participants (68 females, age=24.4±0.9, righthanded=71, native English 393 

speakers=53) were considered for further analyses. 394 

 395 

Procedure. We used an online Web browser-based mouse-tracking face vs. object categorization 396 

paradigm. The experiment was built upon a publicly available code 397 

(https://github.com/mahiluthra/mousetracking_experiment) written in JavaScript using jsPsych 6 398 

libraries 58 and hosted on Pavlovia 59. Experimenters had no direct interaction with the participants 399 

and the experiment ran locally in a web browser on participants own computer 60. The task started 400 

with a central fixation cross and a button marked “Next” at the bottom of the screen that the 401 

participant had to press before each trial, thus effectively repositioning the cursor at the bottom of 402 

the screen at the start of each trial (see Figure 1). After the “Next” button press, a blank screen with 403 

fixation cross was presented for 200ms in order to promote participant’s readiness to start moving. 404 

After the blank screen, an image of a human face (face), an object containing an illusory face 405 

(pareidolic objects), or a matched object (object) was shown at fixation. Two response boxes were 406 

presented in the upper left and right corners of the screen. One of them contained the word “OBJECT” 407 

and the other “FACE”. The position of the face and object response boxes was swapped halfway 408 

through the experiment (i.e., after two blocks), with the initial position of response boxes 409 

counterbalanced across to avoid right/left movement biases. Participants had 800ms to move the 410 

cursor to the response box to give the response to the categorization task. The trial ended after 800ms 411 

or when participants clicked on one of the boxes. In the mouse-tracking plugin, we set the recording 412 

of pointer position coordinates during the 800ms (or until button press) as fast as the local system 413 

could do (1ms) which effectively gave readings every 3 to 10ms, which were then linearly interpolated 414 

into 5ms temporal resolution. Correct trials were taken as those on which the participant clicked on 415 

the correct response box, and those where the cursor landed on the correct response box, even if 416 

there was no click. We presented the original 96 images used in 24: 32 human faces, 32 illusory faces 417 

(i.e., pareidolic objects), and 32 matched objects (see 24 for details). To avoid response biases due to 418 

a higher likelihood of objects compared to faces, we also included an additional 32 human faces which 419 

served to equalise the probability of objects and faces (additional face images not included in 420 

analyses). All 128 images appeared in each block; there were four blocks in total and participants could 421 

take a self-paced rest break in between each block as necessary.  422 

 423 

Mouse-tracking movement trajectory analysis. We analysed mouse-tracking data in MATLAB using 424 

in-house custom-developed scripts (https://osf.io/q3hbp/). We considered all trials for analyses (both 425 

correct and incorrect categorizations) as we hypothesized they jointly represent the unfolding of 426 

categorical representations. Empty values at the beginning of the mouse-tracking recordings (due to 427 

late onsets of the mouse movement) and the end (due to response box clicks before the 800ms 428 

deadline) were filled with NaN. We then linearly interpolated the data to 5ms intervals from 5 to 429 

800ms. We then took mouse-tracking horizontal position (x-coordinate) as a time-resolved indicator 430 

of the categorization (and thus a time-resolved proxy of visual processing). Per each one of the 96 431 

images, we averaged the horizontal position, first across trials within participants (4 trials per image), 432 

and then across participants (N=77). We thus considered 29568 individual mouse-tracking trials for 433 

analysis. These averaged responses were taken as a descriptor of the time-resolved face/object 434 

categorization of a given image. We then used a 20ms moving average window in order to smooth out 435 

the mouse-tracking movement trajectories. We used this same smoothing procedure (20ms moving 436 

average window) on the MEG data from 24. 437 
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 438 

Representational similarity analysis (RSA) of movement data. Representational similarity analysis 439 

allows to compare different experimental measures by abstracting them in the information domain. 440 

The way an experimental measure (here pointer horizontal position) differs between two-given stimuli 441 

provides an estimation of how similarly (if the magnitudes match) or dissimilarly (if the magnitude 442 

difference is high) the two stimuli are represented 27. By calculating the differences between every 443 

pair of stimuli, the (dis)similarity matrix provides an estimation of how an experimental measure 444 

represents the whole experimental stimuli set. We constructed a representational (dis)similarity 445 

matrix (RDM) for each timepoint by calculating the absolute difference in horizontal position for every 446 

pair of images yielding 4560 unique pairs (excluding pairs of the same image). This produced 160 RDMs 447 

across the interval of 5 to 800ms after stimulus onset. RDMs organized from left to right and top to 448 

bottom with face images from positions 1 to 32, then pareidolic from 33 to 64 and then objects from 449 

65 to 96. In order to focus on representational distinctions between specific categories, we then 450 

subset the RDMs in three different ways: 1) faces vs. pareidolic objects and normal objects (2048 451 

unique pairwise comparisons), 2) faces vs. pareidolic objects (1024 unique pairwise comparisons), and 452 

3) faces vs. normal objects (1024 unique pairwise comparisons). 453 

 454 

MEG-movement time-time fusion analysis. Fusion analyses allow to compare representational 455 

structures obtained from different experimental measures (for example, neuroimaging and 456 

behaviour) by correlating representational (dis)similarity matrices in a pair by pair basis 27,28. Since 457 

both MEG and movement data are time resolved, we compared RDMs from these two modalities at 458 

every combination of timepoints (35360 timepoints combinations). This temporal generalization 459 

approach (see 61 for a review) allowed us to identify delays in the onset of representational structures 460 

between modalities as well as sustained and repeated structures across time. We calculated the linear 461 

correlation (Pearson’s r) between RDMs from both modalities at every timepoint combination. For 462 

face-rating controlled maps, we calculated partial correlations (Pearson’s r) between MEG and 463 

movement RDMs while controlling for RDMs from face ratings. 464 

 465 

fMRI-movement fusion analysis. Similar to MEG-movement fusions, fMRI-movement fusion analyses 466 

were performed by comparing the representational structures from fMRI and movement via linear 467 

correlation (Pearson’s r). While fMRI data from 24 were not time resolved, there were 4 regions of 468 

interest (ROI) considered (FFA, OFA, LO and PPA). Correlations between RDMs for every fMRI ROI and 469 

movement timepoint were calculated to obtain a correlation value as a function of movement time. 470 

 471 

Movement-MEG-fMRI commonality analysis. In order to understand which brain areas from the four 472 

fMRI ROI shared information with the representational structures from the combination of movement 473 

and MEG, we used a commonality analysis 29,30. Commonality analysis allows to identify the unique 474 

variance contribution of a single variable or predictor to the variance shared among multiple 475 

predictors. This method has successfully been used in conjunction with RSA to compare how different 476 

predictors in the form of neuroimaging methods, models and tasks explain shared variance 30,32,38,62. 477 

Here, we focused on how 4 predictors, the fMRI ROI: FFA, OFA, LO and PPA, contributed to the shared 478 

variance between movement, MEG and fMRI. For each ROI (for example ROI1), we performed a 479 

commonality analysis by comparing the semi-partial correlations of all model variables except for the 480 

ROI whose contribution we wanted to isolate (Mov, MEG, ROI2, ROI3, ROI4), with the semi-partial 481 
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correlation of all the model variables, including the selected ROI (Mov, MEG, ROI1, ROI2, ROI3, ROI4). 482 

We performed this analysis for each fMRI ROI as follows: 483 

 484 

C(Mov,MEG,ROI1) = R2
(Mov,MEG,ROI2,ROI3,ROI4) – R2

(Mov,MEG,ROI1,ROI2,ROI3,ROI4) 485 

C(Mov,MEG,ROI2) = R2
(Mov,MEG,ROI1,ROI3,ROI4) – R2

(Mov,MEG,ROI1,ROI2,ROI3,ROI4) 486 

C(Mov,MEG,ROI3) = R2
(Mov,MEG,ROI1,ROI2,ROI4) – R2

(Mov,MEG,ROI1,ROI2,ROI3,ROI4) 487 

C(Mov,MEG,ROI4) = R2
(Mov,MEG,ROI1,ROI2,ROI3) – R2

(Mov,MEG,ROI1,ROI2,ROI3,ROI4) 488 

 489 

Statistical inference. Time-time MEG-movement fusion maps and commonality maps’ correlations 490 

were tested via one-sample tests against 0 (h0: absence of correlation). We used two-sided t-tests for 491 

MEG-movement fusion maps and one-sided Wilcoxon signed rank tests for commonality maps across 492 

MEG participants (N=22). False discovery rate (FDR) 63 was used to control for multi-comparisons (type 493 

I errors or false-positives) with a q=0.05. Additionally, a cluster size of 50 time-time coordinates was 494 

set as the minimum size threshold for significance to avoid spurious results. Movement-fMRI fusions 495 

were tested using right-sided, one sample t-tests against 0 across fMRI participants (N=16) and multi-496 

comparisons across movement timepoints were also controlled using false discovery rate (q=0.05). 497 

 498 

Data and code availability. Mouse-tracking data and MATLAB code to produce all results and figures 499 

are available at: https://osf.io/q3hbp/ 500 

 501 
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