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A B S T R A C T

The mere presence of information in the brain does not always mean that this information is available to
consciousness. Experiments using paradigms such as binocular rivalry, visual masking, and the attentional blink
have shown that visual information can be processed and represented by the visual system without reaching
consciousness. Using multivariate pattern analysis (MVPA) and magneto-encephalography (MEG), we in-
vestigated the temporal dynamics of information processing for unconscious and conscious stimuli. We decoded
stimulus information from the brain recordings while manipulating visual consciousness by presenting stimuli at
threshold contrast in a backward masking paradigm. Participants' consciousness was measured using both a
forced-choice categorisation task and self-report. We show that brain activity during both conscious and non-
conscious trials contained stimulus information and that this information was enhanced in conscious trials.
Overall, our results indicate that visual consciousness is characterised by enhanced neural activity representing
the visual stimulus and that this effect arises as early as 180ms post-stimulus onset.

1. Introduction

The human visual system processes a steady stream of inputs, but
only a subset of this information enters consciousness. This dissociation
between perceptual processing and visual consciousness has been stu-
died extensively using paradigms such as masking (Breitmeyer and
Öğmen, 2006), and binocular rivalry (Blake, 1998). In these studies,
consciousness denotes visual awareness of a stimulus in the environ-
ment, which differs from the physiological state of wakefulness also
referred to as ‘consciousness’ in medical settings.

The nature of visual consciousness is yet to be fully elucidated and
the current theories differ on the neural processes that underlie visual
consciousness. According to the global neuronal workspace theory, the
broadcasting and amplification of stimulus-specific information, speci-
fically in prefronto-parietal areas, is what allows a visual stimulus to
enter consciousness (Dehaene and Changeux, 2011; Salti et al., 2015).
In contrast, the higher-order theory of consciousness asserts that visual
consciousness does not involve the amplification or broadcasting of
stimulus-specific information (Lau and Rosenthal, 2011; also see Salti
et al., 2015 for discussion). Rather, non-stimulus-specific information is
added, marking the stimulus as ready to enter consciousness. While the
global neuronal workspace and higher-order theories differ on the

nature of visual consciousness, they agree that consciousness emerges
at a late stage of processing.

Visual consciousness has been studied by examining the correlates
of consciousness in brain activity (e.g., Pitts et al., 2014a; Lamy et al.,
2009). In humans, this research most often has taken a univariate ap-
proach, examining regional brain activity measured with fMRI (cf.
Haynes, 2009). Using this approach, for example, activation in the
lateral occipital complex (LOC) measured using fMRI has been linked to
visual consciousness (Grill-Spector et al., 2000). In EEG, a positive
component called the P3b has been found to occur when visual con-
sciousness is present (Dehaene and Changeux, 2011; Lamy et al., 2009).
The P3b component emerges at 300–500ms post-stimulus onset, in-
dicating that visual consciousness is likely to arise during this late time
window. Yet, an earlier component has also been linked to visual
consciousness (Pitts et al., 2014a, 2014b). This component, coined the
visual awareness negativity, emerges at 200–240ms post-stimulus
onset and has been found to correlate with consciousness regardless of
the task relevance of the stimuli.

Perceptual and cognitive phenomena, such as visual consciousness,
may not be characterised by any one single activation, but by the
pattern of multiple activations across the brain (Haynes, 2009). This
idea lends itself to multivariate pattern analysis (MVPA) or “decoding”
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approaches, which study distributed patterns of activity in the brain. In
fMRI studies, decoding studies have shown that it is possible to predict
various types of stimulus-specific information such as stimulus category
and stimulus location from brain activity (e.g., Carlson et al., 2003; Cox
and Savoy, 2003; Haxby et al., 2001; Haynes, 2015; Kamitani and Tong,
2005; Kriegeskorte et al., 2006; Shinkareva et al., 2012). Moreover, the
decoding performance has been shown to change as a function of
consciousness (e.g., Williams et al., 2007; Bode et al., 2012). Williams
et al., for example, found that patterns of activity in the Lateral Occi-
pital Complex (LOC) could reliably predict object category only when
the participants were consciously aware of the stimuli. Activity in V1, in
contrast, could be used to predict object category regardless of whether
the stimulus was consciously perceived. Similarly, Bode et al. (2012)
found that LOC activity could predict stimulus category only when vi-
sual consciousness was present. Studies using decoding methods thus
corroborate what has been previously reported by univariate studies, in
particular, that the LOC is implicated in the conscious perception of
objects.

To date, there has been relatively little research using decoding
methods to investigate the temporal dynamics of visual consciousness.
Decoding methods provide a means to study the dynamics of visual
consciousness processing by revealing what information is being re-
presented by the brain, and also when. For example, one study showed
that stimulus information can be decoded more than 1000ms after
stimulus onset, both when stimuli are consciously perceived and when
they are not (King et al., 2016). Further, the time that decoding per-
formance between consciously perceived and non-consciously per-
ceived stimuli diverges can be used as an indicator of the time visual
consciousness emerges. Using this approach, Salti et al. (2015) found
that visual consciousness for object location emerges at 270ms post-
stimulus onset. Their findings thus suggest that visual consciousness for
object location, typified as greater decoding performance for con-
sciously perceived stimuli, emerges around 270ms post-stimulus onset.

The present study aimed to investigate the time that visual aware-
ness of stimulus category emerges. We recorded magneto-en-
cephalography (MEG) data while participants completed a visual ca-
tegorisation task. We manipulated participants' consciousness of the
stimuli using a standard backward masking paradigm (Breitmeyer and
Öğmen, 2006). Consciousness was measured using three different
methods; by an objective measure (behavioural categorisation accu-
racy), by a subjective measure (self-report of visibility), and by a
combination of both the objective and subjective measures. These three
different methods were used to address concerns that forced-choice
categorisation alone is not an adequate measure of visual consciousness
(Dehaene and Changeux, 2011). Using decoding to analyse the MEG
data, we identified the time at which the neural signal started to differ
between trials where visual consciousness was present and trials where
visual consciousness was not evident. We found that visual conscious-
ness is characterised by an increased decodability of stimulus in-
formation, emerging around 180–230ms post-stimulus onset.

2. Methods

The aim of the current study was to disentangle conscious from
unconscious processing in visual object categorisation using backward
masking paradigm. Participants performed a three-way categorisation
task for three artificial categories of objects (Spikies, Smoothies, Cubies
(Op de Beeck et al., 2006)). The experimental session consisted of two
phases. In the first phase, participants were familiarised with the task
while we adaptively estimated their individual contrast threshold so
that their accuracy was maintained at 50%. Then, in the second phase,
participants performed the categorisation task while we recorded their
brain activity in response to the stimuli with magnetoencephalography
(MEG).

Fig. 1. A. The three object categories:
cubie, smoothie, and spiky. For each
category, there were 210 visually dif-
ferent exemplars. Here we show three
examples of each category. B. The ex-
periment paradigm in the test phase.
On each trial, participants were shown
an object, followed by a mask.
Participants were instructed to report
the category of the object (response
mapping was randomised between
blocks), and finally they reported
whether they perceived the stimulus or
not.
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2.1. Participants

Eight healthy adults (5 female) participated in the study. All were
between the age of 18 and 24 (mean age=20.38 years, SD=1.77
years). Participants were fluent in English and had normal or corrected-
to-normal vision. One participant was left-handed. The participants
gave informed consent in writing prior to their participation and were
financially reimbursed for their time. The study was conducted with the
approval of the Human Research Ethics Committee at the University of
Sydney and Macquarie University.

2.2. Stimuli

The stimuli were novel objects belonging to one of three categories:
cubies, smoothies, and spikies (Fig. 1A), artificially generated using
Matlab (Op de Beeck et al., 2006). There were 210 visually different
exemplars in each object category (Fig. 1A). Stimuli were presented in
greyscale on a black background (Fig. 1B), at the centre of the screen
(visual angle: 3.23°× 2.87°). The stimuli were masked using greyscale
random dot masks, constructed by assigning random values to the
pixels of a 100×100 image, displayed at the same size and location as
the stimuli. The same stimuli and masks were used in the familiarisa-
tion and test phase of the study. During the familiarisation phase, the
contrast in which the stimuli were presented was calibrated for each
participant, so that they would correctly categorise the object 50% of
the time (chance level= 33%). During the test phase, the contrast also
varied from trial to trial, to ensure that the participants would correctly
categorise the object approximately 60% of the time using QUEST
(Watson and Pelli, 1983). We used 50% in the familiarisation phase to
make the training engaging and challenging, and then increased the
threshold 60% to get a good distribution of correct and incorrect trials
for the main experiment. The experiment was run in Matlab R2011b,
using the Psychophysics Toolbox version 3.0.10 (Brainard, 1997;
Kleiner et al., 2007; Pelli, 1997). The stimuli were projected onto a
screen inside the magnetically shielded room using an EPSON EB-
G7400U projector. The participants reported their responses using a 4-
button cylinder box.

2.3. Procedure

At the start of the experiment, the participants were fitted with a
cap containing 5 marker coils to monitor head movement. Their head
shape was also digitised using the Locator programme with Fastrak
Polhemus (version 5.5.2) to check the location and alignment of the
head in the scanner. The participants laid in a supine position in the
MEG scanner, in a dimly lit magnetically shielded room (Fujihara Co.
Ltd., Tokyo, Japan). The participants were instructed to minimise their
head movements whilst inside the scanner. The recordings were made
using a whole-head MEG system containing 160 axial gradiometers
(Model PQ1160R-N2, KIT, Kanazawa, Japan). MEG signal was con-
tinuously sampled at 1000 Hz, band-pass-filtered online between
0.03 Hz and 200 Hz.

The experiment employed a backward masking paradigm. The
target stimulus was presented for a brief duration followed by a mask at
the same location where the stimulus was previously displayed
(Fig. 1B).

The first part of the experimental session was a familiarisation
phase. During this phase, there was a 1000ms interval at the start of
each trial, followed by a fixation cross presented at the centre of the
screen for 500ms. This was followed by another 200ms interval with a
blank screen. Subsequently, the target stimulus was presented for
33ms. After target stimulus offset, there was a delay of 17ms before a
random-dot mask appeared. The mask was presented for 500ms, at the
same location where the target stimulus previously appeared. Following
mask offset, participants were prompted to categorise the object shown
in the trial. Participants were allowed as much time as needed to

categorise the object. Once the participants had entered a response, the
next trial started.

The familiarisation phase consisted of 100 trials, 25 of which were
control trials, which did not contain a stimulus. In these trials, the
presentation of the target stimulus was replaced with a blank screen,
which lasted for 33ms (the same duration as stimulus presentation in
target trials). The remaining 75 trials were target trials, where the
target stimuli were presented. In these trials, the stimulus was either a
spiky, smoothie or cubie. All three categories were presented equally
often, to eliminate bias for any particular category. Stimuli for each
category were randomly drawn from the stimuli pool described in
Section 2.2. All four types of trials (spiky, smoothie, cubie, and control
trials) were presented in random order during the familiarisation phase.
The familiarisation phase lasted approximately half an hour. There was
no MEG acquisition during this phase.

Upon completion of the familiarisation phase, the participants
commenced the test phase. The test phase followed a similar procedure
as the familiarisation phase, except that after the categorisation ques-
tion, the participants were also asked: “Did you see the object?”. The
participants selected either the “Yes” or “No” response. They were in-
structed to respond “Yes” only when they had seen the stimulus and
were also able to identify what category it was. As with the categor-
isation question, participants were allowed as much time as necessary
to respond to this question.

The test phase consisted of seven blocks. Each block lasted for ap-
proximately 8minutes and was comprised of 168 trials (42 spiky trials,
42 cubie trials, 42 smoothie trials and 42 control trials). At the start of
each block, the response mapping for the categorisation question was
changed to ensure that motor response could not act as a confound. The
response mapping was changed after every block in a random order.
The test phase lasted an hour including the breaks between blocks.

2.4. Analysis

2.4.1. Pre-processing
At the time of the experiment, 9 MEG channels were undergoing

maintenance and the analysis was performed on the remaining 151
channels. The data were down-sampled to 100 Hz (10ms resolution).
Stimulus onset times were determined using a photodiode located in the
corner of the display in the magnetically shielded room. MEG record-
ings were sliced into epochs starting from 100ms prior to stimulus
onset and ending at 800ms post-stimulus onset. Pre-processing was
performed in Matlab R2017, using the FieldTrip Toolbox (version
20170502) (Oostenveld et al., 2011). No further preprocessing steps
were applied to the data.

2.4.2. Decoding
We performed a time-series decoding analysis on the preprocessed

data (Grootswagers et al., 2017), implemented in CoSMoMVPA
(Oosterhof et al., 2016). After discarding control trials, we decoded the
category of the stimulus for each participant over the time course of the
trial. We used linear discriminant analysis (LDA) classifiers as im-
plemented in CoSMoMVPA. The classifier was trained at every time
point in the epoch, using the activation values from all MEG channels.
The decoding performance was examined using a leave-one-block-out
cross-validation method, training the classifier on all-but-one blocks,
testing it on the remaining block, and repeating this leaving every block
out for testing once. We applied this analysis on all pairwise combi-
nations of category pairs (i.e., spiky versus smoothie, spiky versus
cubie, and smoothie versus cubie) and report the mean cross-validated
decoding performance across pairwise combinations.

Stimuli were presented at a varying contrast throughout the ex-
periment (using the QUEST adaptive procedure). We therefore took the
following steps to control for contrast: firstly, we excluded the first
block of each participant, where the QUEST procedure had not yet
converged, and contrast was more variable. Secondly, we exactly
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matched the contrast of correct and incorrect trials for the analysis; for
each trial with an incorrect response, we selected a correct response
trial that was presented at the exact same contrast value. If no matching
trial was found, the trial was excluded. On average, this procedure
retained 74.82% of trials (mean± SD: 377.08 ± 78.84 trials). This
approach ensured that the decoding procedure was performed not only
on equal numbers of correct and incorrect trials (thus avoiding classifier
bias), but also that the correct and incorrect trials had the exact same
contrast values and distributions. Within the cross-validation proce-
dure, the classifier was trained on all remaining trials. To examine the
difference between conscious and unconscious processing, we grouped
the trials in the test set and assessed their decoding performance se-
parately according to the following three comparisons:

1. ‘correct’ versus ‘incorrect’ trials (objective measure)
2. ‘seen’ versus ‘unseen’ trials (subjective measure)
3. ‘correct-seen’ versus ‘incorrect-unseen’ trials (combined measure)

2.4.3. Statistical testing
At each time point in the response, we tested whether decoding

accuracy was at chance-level (H0), or above chance (H1). We also
tested whether the decoding performance between groupings (e.g.,
correct versus incorrect) was the same (H0) or different (H1). To
compare hypotheses, we used Bayes Factors (BF), which quantify the
evidence for one hypothesis over the other (Jeffreys, 1998; Morey and
Rouder, 2011; Rouder et al., 2009; Wagenmakers, 2007; Wetzels et al.,
2011). In the Bayesian framework, a BF of 3 indicates H1 is three times
more likely than H0, and a BF of 1/3 indicates the opposite. A BF > 3
or BF < 1/3 is generally considered as substantial evidence (roughly
comparable to a p-value < 0.01), and BF > 10 or BF < 1/10 as
strong evidence (roughly comparable to a p-value < 0.001) for H1 or
H0, respectively (Dienes, 2016; Jeffreys, 1998; Wagenmakers, 2007;
Wetzels et al., 2011). Note that the Bayes factors are continuous degrees
of evidence, and the two levels of thresholding are mainly used for
visualisation purposes. We did not treat these thresholds as hypothesis
testing at the single time point level, and instead considered the evi-
dence across multiple time points. This means that isolated time points

that reach the threshold are not treated as evidence for a hypothesis if
the evidence in the surrounding time points goes in the opposite di-
rection.

We constructed a uniform prior for H1 with an upper bound set at
100% in the case of decoding accuracy, and at 50% for the difference
between accuracies (Dienes, 2008, 2014). Instead of using chance as
lower bound for H1, we constructed a conservative estimate of the
lower bound using a permutation test (Maris and Oostenveld, 2007;
Stelzer et al., 2013) as follows: for each participant, we created 100
null-results by performing the classification analysis on shuffled class
labels. We then sampled at random 5000 times from the individual
participant null-distributions and computed the mean decoding per-
formance, resulting in a group level null-distribution (Maris and
Oostenveld, 2007). We used the group-level decoding accuracy at the
95th percentile of this null-distribution as the lower bound of the prior
for H1. When comparing the difference in decoding performance be-
tween groupings (e.g., correct versus incorrect), we created in a similar
way a group-level null-distribution of differences and used the 95th
percentile of this distribution as lower bound for the difference between
accuracies.

2.4.4. Exploratory analysis
To explore the source of the decodable signal, we performed a

channel-space searchlight analysis for the combination of both the
objective and subjective measures (i.e., 'correct-seen' versus 'incorrect-
unseen'). For a given channel, we took the 4 closest neighbouring
channels and performed the same decoding procedure on this local
cluster of channels. The decoding accuracy was then stored at the
centre channel. This process was repeated for all channels, yielding a
scalp map of decoding accuracies for every time point.

3. Results

The aim of the study was to investigate the temporal dynamics of
visual consciousness. We operationalised visual consciousness using
three different methods: (1) objective measure alone (i.e. categorisation
accuracy), (2) subjective measure alone (i.e. self-report of visibility); (3)

Fig. 2. The time course of decoding performance for: A. ‘correct’ vs ‘incorrect’ trials; B. ‘seen’ vs ‘unseen’ trials; C. ‘correct-seen’ vs ‘incorrect-unseen’ trials. Shaded
regions show±1 SEM across participants. The broken horizontal line indicates chance level. The y-axis indicates decoding performance, with 1 being 100%
accuracy, and 0.5 indicating 50% accuracy. The x-axis indicates the time course of the trials in seconds relative to stimulus onset. Bayes Factors (BF) are indicated by
the dots above the x-axis of each graph. BF were thresholded at 1/10, 1/3, 1, 3, and 10 (see inset). A BF of 1/3 or below indicates evidence for the null hypothesis
(filled dots in the bottom two rows), and a BF of 3 or above indicates evidence for the alternative hypothesis (filled dots in the top two rows), and BF between those
values reflects insufficient evidence for either hypothesis (open dots in the two middle rows). Purple and orange dots in each graph indicate the BF for above-chance
decoding for the purple and orange lines in that graph, respectively. Black dots indicate the BF for the difference in decoding performance between the purple and
orange conditions in that graph. The shaded vertical grey areas show the three time points shown in Fig. 3 for the exploratory channel-searchlights. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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the combination of both the objective and subjective measures. We
decoded the stimulus category (spiky, smoothie, cubie) and then com-
pared the decoding performance in three sets of comparisons corre-
sponding to the three operationalised definitions of consciousness: (1)
between trials where participants responded correctly in the categor-
isation task and those where they responded incorrectly (‘correct’ vs
‘incorrect’ trials; Fig. 2A); (2) between trials where participants re-
ported having seen the stimulus and those where they reported not
having seen it (‘seen’ vs ‘unseen’; Fig. 2B); (3) between trials where
participants responded correctly in the categorisation task and also said
they saw the stimulus and trials where participants neither responded
correctly in the categorisation task nor reported seeing the stimulus
(‘correct-seen’ vs ‘incorrect-unseen’; Fig. 2C).

3.1. Objective measure

In the first comparison (Fig. 2A), visual consciousness was oper-
ationalised by the objective measure: the participants' accuracy in the
categorisation task. Trials where participants responded correctly
(‘correct’ trials) showed decoding performance that was above chance
starting from 110ms post-stimulus onset (BF=10.52). Trials where
participants responded incorrectly (‘incorrect’ trials) also showed above
chance decoding performance starting from 110ms post stimulus onset
(BF= 12.16). The ‘correct’ trials were first observed to have higher
decoding performance than the ‘incorrect’ trials at 230ms post-stimulus
onset (BF=47.00). Between 230ms and 410ms post-stimulus onset,
this difference was inconsistent, but from 410ms onwards, the ‘correct’
trials consistently had better decoding performance compared to the
‘incorrect’ trials. Prior to 190ms, there was evidence for the null hy-
pothesis of no difference between the ‘correct’ and ‘incorrect’ trials
(BF < 1/3).

3.2. Subjective measure

In the second comparison (Fig. 2B), visual consciousness was op-
erationalised by the subjective measure: participants' subjective report
of visibility. In trials where participants reported that they saw the
stimulus (‘seen’ trials), the decoding performance rose above chance
from 130ms post-stimulus onset (BF= 5.94). In ‘unseen’ trials, the
decoding performance was above chance from 110ms post-stimulus
onset (BF=17.77). Decoding performance for ‘seen’ trials was better
than that for ‘unseen’ trials, with this difference emerging at 200ms
post-stimulus onset (BF=14.65). However, this difference was not as
consistent throughout the rest of the time series as it was for the first
comparison.

3.3. Combined measure

In the third comparison (Fig. 2C), visual consciousness was oper-
ationalised by a combination of both the objective and subjective
measures: categorisation accuracy and self-report of visibility. In the
‘correct-seen’ trials, the decoding performance was above chance from
130ms post-stimulus onset (BF=3.54). The ‘incorrect-unseen’ trials
showed decoding performance above chance starting from 110ms post-
stimulus onset (BF= 5.60). From 180ms, there was a difference in
decoding performance with the ‘correct-seen’ trials showing better de-
coding performance than ‘incorrect-unseen’ trials (BF= 9.45). There
was also evidence for no difference between ‘correct-seen’ and ‘in-
correct-unseen’ trials prior to 170ms.

3.4. The neural source of decodable information: an exploratory analysis

An exploratory analysis using channel-searchlights (Fig. 3)

Fig. 3. Result for the exploratory searchlight analysis for ‘correct-seen’ versus ‘incorrect-unseen’ comparison. These maps show channel decoding accuracies for the
three timepoints annotated in Fig. 2. The first row shows decoding accuracy for ‘correct-seen’ trials, the second row for ‘incorrect-unseen’ trials, and the bottom row
shows the difference.
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indicated that during the middle time period (200–220ms), decodable
stimulus information was found around occipital channels in the ‘in-
correct-unseen’ trials, and from frontal and occipital channels in the
‘correct-seen’ trials. Compared to the ‘incorrect-unseen’ trials, there
seemed to be more decodable stimulus information coming from frontal
channels. During the late time period (300–320ms), decodable stimulus
information was found in the occipital and frontal channels in both the
‘correct-seen’ and ‘incorrect-unseen’ trials, and there was a greater
amount of decodable information from the occipital channels in the
‘correct-seen’ trials.

4. Discussion

This study investigated the information represented by the brain
during conscious and unconscious processing of visual objects. In a
MEG recording session, we showed participants stimuli at threshold,
such that only on a subset of trials the stimuli reached conscious
awareness, and had participants give objective (i.e., categorisation ac-
curacy) and subjective (i.e., self-report of visibility) reports on the sti-
mulus they were viewing. In our analysis, we then operationalised
consciousness using objective, subjective, and a combined objective-
subjective measure to study how stimulus information was represented
in the brain during consciousness and unconscious processing.

4.1. Visual consciousness characterised by increased decodability for
stimulus information

Across all the definitions of consciousness, we found consistent
patterns of results regarding the information represented during con-
scious and unconscious processing. Irrespective of definition, we could
decode object category information from both conscious and un-
conscious trials. Notably, showing that we can decode stimulus in-
formation during unconscious trials demonstrates that the brain re-
presents object information even if the stimulus does not reach
conscious awareness. When consciousness was operationalised by the
objective measure (categorisation accuracy), we found that decoding
performance for 'correct' trials was higher than ‘incorrect’ trials starting
from 230ms post-stimulus onset. A similar pattern of results emerged
for the subjective and combined objective-subjective definitions of
consciousness. In both cases, we observed higher decoding performance
for “conscious” than “unconscious” trials. Collectively, these findings
indicate that the difference between conscious and unconscious pro-
cessing is better characterised as a difference in the strength of the
stimulus representation, which is that information is enhanced (i.e.,
more decodable) during conscious processing.

4.2. Stimulus-related information is processed by the brain with conscious
awareness of the stimulus

Stimulus information was present when visual consciousness was
considered absent using all three operationalised definitions, indicating
that some processing is completed by the brain independent of visual
consciousness. These results corroborate fMRI decoding studies
showing stimulus information is represented in the brain even when the
stimulus is not consciously accessible. Williams et al. (2007), for ex-
ample used an objective measure of consciousness (i.e., behavioural
performance) to show that object category information could be de-
coded from primary visual cortex even when subjects incorrectly re-
ported the stimulus category. Our study further showed that when
consciousness was operationalised using subjective report (i.e., seen/
unseen trials), stimulus information was decodable during unconscious
processing. These results echo the findings of King et al. (2016), who
showed that stimulus information is encoded and maintained in the
brain up to 1150ms post-stimulus onset, irrespective of the subjective
reports. Finally, we also found that stimulus information was decodable
for unconscious trials using the combined objective-subjective measure

(i.e., ‘incorrect-unseen’ trials). Collectively, our findings show that ir-
respective of the method used to operationalise visual consciousness,
stimulus information is represented by the brain even when the sti-
mulus is not consciously accessible to the observer.

4.3. Visual consciousness emerges between 180 and 230ms post-stimulus
onset

Conscious trials showed higher decoding performance regardless of
the operationalised definition of consciousness, a difference that
emerged between 180 and 230ms post-stimulus onset. This time is
notably earlier than the 270ms estimate reported in a decoding study
by Salti et al. (2015). There are several possible explanations for this
discrepancy. Firstly, Salti et al. displayed their stimuli in the periphery,
whereas in the present study stimuli were displayed at the fovea. Visual
acuity is lower in the periphery (Anstis, 1974, 1998), thus one ex-
planation is the peripheral stimuli used by Salti et al. were weakly re-
presented and/or took longer to be processed. Due to the reduced fi-
delity in processing stimuli in the periphery, visual consciousness thus
might have been found to emerge at a later time.

Secondly, Salti et al. (2015) divided the time course into (four)
discrete time windows, while the present study investigated time series
by measuring decoding accuracy at each time point. Notably, the time
for visual consciousness in our results was 180–230ms, which falls at
the mid-point of the third time window defined by Salti et al. (i.e.,
162–271ms post-stimulus onset). The second time window used by
Salti et al. potentially could have had added noise, which rendered the
difference between conscious and unconscious processing insignificant.
Thus, a second explanation is that our fine-grained temporal resolution
led to finding differences at an earlier time.

Finally, the two studies examined different stimulus properties. In
Salti et al., the stimulus property of interest was stimulus location,
whereas we investigated stimulus category. The discrepancy in the
findings might be explained by the fact that consciousness for category
emerges at an earlier time than that for stimulus location. This possi-
bility contradicts earlier findings showing that the decoding onset for
stimulus category emerges after that for stimulus location (Carlson
et al., 2011). Moreover, it is generally accepted that stimulus location is
represented early (i.e., primary visual cortex), while object category
information is represented at a later stage in the visual hierarchy (lat-
eral occipital cortex and inferior temporal cortex). The explanation that
the conscious representation of location precedes the representation of
category thus contradicts both previous decoding studies and accepted
knowledge of the visual hierarchy. We, therefore, view this latter ex-
planation as possible, but not plausible. Nevertheless, future work could
investigate these three possible explanations for the difference between
Salti et al. and our study's findings.

Other studies have taken a univariate analysis approach with EEG to
study the brain dynamics of consciousness. Dehaene and Changeux
(2011) and Lamy et al. (2009), for example, reported the P3b correlated
to visual consciousness. The P3b is an event-related potential (ERP)
with onset between 300 and 500ms. This timing is notably later than
the time window reported in this study (between 180 and 230ms). In
contrast, Pitts et al. (2014a, 2014b) showed that the visual awareness
negativity (VAN) correlated to visual consciousness. The onset of the
VAN is approximately 200ms, which coincides more closely with our
estimate of the time of the emergence for visual consciousness.

4.4. Stimulus information associated with visual consciousness does not
preclude the existence of a non-stimulus specific ‘tag’ for consciousness

The difference between the presence and absence of visual con-
sciousness manifested in the strength of decoding performance. Visual
consciousness thus correlates with increased decoding performance.
This observation, to some extent, supports the global neuronal work-
space theory, which proposes that visual consciousness emerges due to
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the amplification of stimulus-specific information (Dehaene and
Changeux, 2011). Our exploratory channel-searchlight results indicated
that during the middle time period, this amplification of neural in-
formation found had its source in the frontal lobe. However, as the
searchlight analysis were exploratory in nature, it was not known
whether the neural information found was strongly related to the pre-
frontal cortex, which is implicated in the global neuronal workspace
theory. Moreover, the finding that visual consciousness relates to the
strength of the representation does not preclude the possibility that
additional non-stimulus-specific signals are also involved, as proposed
by the higher order theory (Lau and Rosenthal, 2011; see Salti et al.,
2015 for discussion). Such non-stimulus-specific signals, could play a
dual role by ‘tagging’ certain stimuli as ready for conscious perception,
and simultaneously contributing to the amplification of stimulus-spe-
cific information.

4.5. The contribution of attention, memory and decision-making

A limitation in the present study is that it did not isolate the con-
tribution of attention, memory and decision-making to the results. All
these factors often co-occur with visual consciousness, yet are not visual
consciousness per se (Aru et al., 2012; de Graaf et al., 2012; Lamme,
2006; Tallon-Baudry, 2012). Attention, in particular, has been shown to
enhance neural activity in response to stimulus categories (Desimone
and Duncan, 1995; Kastner and Ungerleider, 2000; O'Craven et al.,
1999). Moreover, memory is often required to maintain the conscious
percept for subsequent reporting, and quite often the reporting process
involves an explicit decision made by the participants. As a result, these
additional factors also could mediate the observed relationship between
visual consciousness and neural activity. It is therefore difficult to dis-
entangle whether the difference in neural activity between ‘conscious’
and ‘non-conscious’ conditions is due to visual consciousness alone, or
other concomitant factors such as attention, memory, and decision-
making.

4.6. Conclusion

The present study aimed to examine the dynamics of visual con-
sciousness by studying the brain's representation of conscious and un-
conscious stimuli. Across three different methods of operationalising
visual consciousness, we found that conscious awareness is char-
acterised by increased decodability of neural signals encoding stimulus
information. We found that this difference between conscious and un-
conscious processing emerges between 180 and 230ms post-stimulus
onset. Given that factors such as attention, memory and decision-
making may have contributed to the findings, care must be taken when
attributing the observed findings to visual consciousness alone.
Nonetheless, our results corroborate existing literature on the neural
characteristics of visual consciousness, and provide new evidence that
visual consciousness may emerge earlier than previously established.
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