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A B S T R A C T   

Can we trust our eyes? Until recently, we rarely had to question whether what we see is indeed what exists, but 
this is changing. Artificial neural networks can now generate realistic images that challenge our perception of 
what is real. This new reality can have significant implications for cybersecurity, counterfeiting, fake news, and 
border security. We investigated how the human brain encodes and interprets realistic artificially generated 
images using behaviour and brain imaging. We found that we could reliably decode AI generated faces using 
people’s neural activity. However, while at a group level people performed near chance classifying real and 
realistic fakes, participants tended to interchange the labels, classifying real faces as realistic fakes and vice versa. 
Understanding this difference between brain and behavioural responses may be key in determining the ’real’ in 
our new reality. Stimuli, code, and data for this study can be found at https://osf.io/n2z73/.   

1. Introduction 

The novel and rapidly emerging phenomena of fake multimedia have 
swept through modern culture to the extent that the fake has become the 
expected norm (Adelani et al., 2020; Shen et al., 2019; Shu, Sliva, Wang, 
Tang, & Liu, 2017). The degree to which terms like ‘fake news’ or 
‘photoshopped’ have become common parlance is indicative of a general 
and commonly experienced inability to distinguish between what is real 
and what is not (Fletcher, 2018). Meanwhile, AI technologies, in 
particular Generative Adversarial Networks (GANs), have been making 
increasingly rapid advances in generating realistic images with face 
generation as a major focus (Karras et al., 2019, 2020; Wang et al., 2018; 
Yu et al., 2020). These advances in realism have begun to have real- 
world consequences including undetectable videos of fake events 
(“Deepfakes”: Kietzmann, Lee, McCarthy, & Kietzmann, 2020), art and 
audio-visual counterfeits (Farokhmanesh, 2018), and fraudulent social 
media accounts (Gleicher, 2019). For instance, in 2019, Facebook 
announced that fake accounts were being created with profile pictures 
generated by artificial intelligence in an attempt to evade detection 
(Gleicher, 2019). Crucially, understanding how people respond to AI 
images, in terms of both behaviour and neural responses, will inform us 
about how realistic artificial images and faces are perceived differently 

from real ones, how this dissociation is encoded by the brain, and can 
ultimately aid in the development of future policy and strategies to curb 
the potentially nefarious uses of fake media. 

One area in which AI technology has made increasingly rapid and 
apparent progress is the generation of realistic faces. Until now, fooling 
observers with artificial faces has been particularly difficult given the 
expertise humans have with face perception and recognition (Farid & 
Bravo, 2007, 2012; Gauthier & Tarr, 2002; Sinha, Balas, Ostrovsky, & 
Russell, 2006). Not only are faces perceived differently than objects 
(Shakeshaft & Plomin, 2015; Sunday, Dodd, Tomarken, & Gauthier, 
2019) but neuroimaging studies highlight distinct brain networks for 
face processing (Axelrod & Yovel, 2015; Gauthier & Tarr, 2002). The 
specialized processing of faces results in the rapid and automatic 
detection of artificial face appearance (Wheatley, Weinberg, Looser, 
Moran, & Hajcak, 2011). For example, the uncanny valley effect de
scribes how observers remain viscerally aware of artificial faces indi
cated by a steady drop in affinity as an artificial face approaches human 
likeness, despite not being able to identify any perceivable defects 
(MacDorman & Chattopadhyay, 2016). In another example, photo
graphs of real faces yield a higher recognition accuracy than computer- 
generated equivalents demonstrative of enhanced face expertise for the 
former (Crookes et al., 2015). Likewise, observers have typically 
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performed well at discriminating human faces from computer-generated 
faces depending on image resolution, training, and incentives (Holmes, 
Banks, & Farid, 2016). However, more recent studies have shown 
increasingly poorer performances at telling real from fake (Mader, 
Banks, & Farid, 2017; Nightingale, Wade, & Watson, 2017; Sanders, 
Ueda, Yoshikawa, & Jenkins, 2019; Zhou et al., 2019). As the capacity 
for image realism is steadily increasing, the identification of fake faces 
will likely be further challenged. 

Neuroimaging has provided useful insight into how face perception 
unfolds over time. Electroencephalography (EEG), which measures 
electrical activity at the scalp with a very high temporal resolution, has 
been used to identify unique neural responses that reflect the temporal 
emergence and dynamics of facial processing (Bentin, Allison, Puce, 
Perez, & McCarthy, 1996; Rossion et al., 2000). Wheatley et al. (2011) 
demonstrated the brain’s discrimination of real and artificial faces by 
comparing neural responses to real faces with responses to doll faces. 
The authors found that both human and artificial faces elicited an N170, 
a face-specific neural response approximately 170 ms after image pre
sentation. However, sustained positivity beyond 400 ms was associated 
only with human faces, suggesting that this EEG potential could index a 
process that distinguishes between real and fake faces (Wheatley et al., 
2011). Indeed, in other studies, sustained positivity, characterised by the 
late positive amplitude (LPP), increased as face realism increased, sug
gesting that real faces, more so than artificial faces, engage high-level 
attentional, semantic and identity evaluations (Schindler, Zell, Botsch, 
& Kissler, 2017). The new generation of realistic faces produced by GAN 
technology, however, is of a far superior quality than previously studied 
artificial faces and often practically indistinguishable from real faces. 
Whether the brain elicits neural indicators consistent with artificial fake 
detection for the new generation of GAN-produced images has yet to be 
seen. Considering that humans remain the gold standard of fake image 
and face detection (Natsume et al., 2019, Marra, Gragnaniello, Cozzo
lino, & Verdoliva, 2018), examining the neural mechanisms in fake face 
detection is instrumental in understanding how to best tackle and un
derstand the new age of fake media. EEG remains an ideal method to 
provide useful insights into the neural processing of fake GAN faces. 
Firstly, it allows for an insight into the sequential stages of face pro
cessing, from low-level visual features to holistic face perception. Sec
ondly, closer examination at the neuronal population level enables us to 
answer at what temporal stages GAN face perception may differ from 
real face perception. Thirdly, using newer multivariate methods applied 
to EEG data enables analysis of signal-level information on a trial-by- 
trial basis and can pinpoint the precise temporal emergence of visual 
processing (Grootswagers, Robinson, & Carlson, 2019; Haynes & Rees, 
2006; Teichmann et al., 2020). 

With progressive advances in realistic image generation, have we 
reached a point where observers can no longer tell apart real from the 
fake? Can measuring the brain’s response reveal how realistic faces are 
distinguished from real faces? We measured whether observers could 
behaviourally discriminate real faces from GAN-generated faces at two 
levels of face realism; one level of realism similar to fake images used in 
previous work (“unrealistic”), and another level which represents the 
current state-of-the-art realistic artificial images (“realistic”). We ex
pected that participants would not be able to discriminate between real 
from realistic faces but could for unrealistic faces, consistent with pre
vious research using AI-generated faces (Hulzebosch, Ibrahimi, & 
Worring, 2020; Zhou et al., 2019). To investigate whether we could 
decode real and fake images from brain activity we used time-resolved 
multivariate pattern analysis (MVPA) and EEG. To ensure the real and 
fake stimuli evoked typical categorical effects that could be decoded in 
the neural signal, we also included cars and bedrooms stimuli. We 
presented images upright in rapid sequences, which we have previously 
shown captures low- and high-level image processing (Grootswagers, 
Robinson, & Carlson, 2019; Oosterhof, Connolly, & Haxby, 2016). To 
determine the contribution of low-level image properties, we used a 
much faster presentation rate (20 Hz; Robinson, Grootswagers, & 

Carlson, 2019) and also investigated how real/fake face processing is 
affected by image inversion, which limits high-level expert face- 
processing. Consistent with the brain’s sensitivity to artificial face 
appearance, we found it was possible to decode real faces from GAN- 
generated faces at both levels of face realism using the EEG data. 
When asked to behaviourally classify faces as either real or fake, a large 
group of participants could correctly classify or spot both unrealistic and 
realistic faces. However, they performed below chance at classifying real 
faces from realistic faces. In other words, observers perceived GAN 
realistic faces as appearing more real than real faces. Understanding 
differences between observer-reported perceptions of fake images and 
the brain’s response can yield important insights into human face 
perception in general as well as raise possibilities for training observers 
to tell apart real from fake. 

2. Methods 

We performed two experiments that investigated fake versus real 
image identification: one behavioural and one neuroimaging. The 
stimuli, data, and analysis code can be found at https://osf.io/n2z73/. 

2.1. Participants 

For behavioural testing, we recruited 200 participants from Amazon 
Mechanical Turk (MTurk) in return for payment. For the EEG compo
nent, 22 participants (15 females, 7 males; mean age 20, range: 18–28) 
were recruited from the University of Sydney in return for course credit. 
Subjects all had normal or corrected-to-normal vision and had no re
ported history of psychiatric or neurological disorders. The study was 
approved by the Human Ethics Committee of the University of Sydney. 
Verbal and written consent was obtained from each participant. 

2.2. Stimuli & design 

GAN-generated stimuli were obtained from StyleGAN output found 
at shorturl.at/josOY (Karras, Laine, & Aila, 2019). For a full description 
of the StyleGAN generative procedure and output, see Karras et al. 
(2019). Fake stimuli consisted of 25 faces, cars, and bedrooms at trun
cation levels of Ψ0.5 (realistic) and Ψ1.0 (unrealistic), (Fig. 1B). To best 
match image statistics across real and fake images, real images were 
obtained from GAN training set of images. These real training faces were 
obtained from the Flickr-Faces-HQ dataset (Karras et al., 2019). Real 
cars and bedrooms were randomly selected from the LSUN dataset (Yu 
et al., 2015). To maintain consistent aspect ratios, all images were 
cropped to a square aspect ratio and resized to a 256 × 256 pixel 
dimension. No other filtering or editing was applied to the stimuli to 
provide a naturalistic demonstration of visual processing. To reduce 
obvious surface-level inconsistencies between real and fake images, real 
faces with eyes not facing frontward and/or with overly pronounced 
facial expressions (e.g., crying, laughing) were excluded. Upon surface 
inspection, we found no consistent delineating features between the real 
and fake bedrooms and cars. All images were presented in both upright 
and inverted orientations totalling 450 stimuli overall (Fig. 1B). To 
examine low-level properties at the image level, we took the mean image 
from the face, car, and bedroom stimuli and from 100 novel stimuli 
separately and computed the absolute pixel difference (Fig. 1C). This 
allowed us to compare how visually distinct the face categories (i.e., 
how different the average unrealistic/realistic faces) in our study were 
from an average real face. 

Behavioural testing for real versus fake face discrimination was 
conducted online (for online/offline comparability see Grootswagers, 
2020). The experiment was programmed in jsPsych (De Leeuw, 2015) 
and hosted on Pavlovia.org (Peirce et al., 2019). Two hundred partici
pants performed real or fake face judgements for one of four compari
sons (50 in each group): 1) upright unrealistic vs upright real, 2) upright 
realistic vs upright real, 3) inverted unrealistic vs inverted real, and 4) 
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inverted realistic vs inverted real. Before beginning, participants were 
informed that half of the faces were fake, and half were real. They were 
not given any information on how to tell the difference. To investigate 
how untrained observers would identify real from fake faces given only a 
brief glimpse, we were interested in purely naïve observation. Each 
observer was shown 50 images in total: 25 fake and 25 real. Participants 
were informed that 50% of the images were real photos and 50% were 
computer-generated and were instructed to choose whether each image 

was real or fake. Each image was individually presented on the screen 
for 200 ms, followed by a blank screen until the participant pressed a 
button to indicate if the face was real or fake. Stimuli were presented at 
256 × 256 pixel dimension against a grey background. The presentation 
of images was randomised, and each image was only presented once. 
The experiment took around 3–5 min to complete (Fig. 1D). 

For the EEG component, the experiment was presented in Psychopy2 
(Peirce et al., 2019). Participants sat in a dimly lit room approximately 

Fig. 1. Experimental stimuli and design. A) Real, realistic, and unrealistic faces used in the experiment, B) Face, car, and bedroom stimuli from three conditions 
(real, realistic, unrealistic), taken from StyleGAN. C) Mean image for each condition and the absolute pixel difference between 100 independent real images not used 
in the experiment. Brighter colours (orange) indicate greater absolute differences. D) Experimental designs from left to right; behavioural experiment, 5 Hz EEG 
experiment and 20 Hz EEG experiment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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60 cm away from a 1920 × 1080 pixel Asus computer monitor. Stimuli 
subtended approximately 6.4 degrees visual angle on a grey background 
with a white fixation circle superimposing the stimuli at approximately 
1.3 degrees. Images were presented at a 256 × 256 pixel dimension and 
in a rapid serial visual presentation (RSVP) paradigm, whereby stimuli 
are presented in rapid succession, at 20 Hz and 5 Hz sequences (33 ms 
image duration and 167 ms or 17 ms gap). There were 20 sequences at 
each presentation rate comprising 40 in total with 18,000 images pre
sented overall (with 20 repeats of each stimulus at each presentation 
rate). A sequence was started with a button press and lasted approxi
mately 40 s. Subjects were instructed to fixate upon a white circle 
superimposed over each stimulus at the centre of the screen and told to 
respond by pressing any button on a 4-way button box whenever they 
spotted the fixation circle turn red (Fig. 1D). Fixation colour changes 
were randomised to occur between 2 and 5 times in each sequence. 
Length of colour change corresponded to the time of one image pre
sentation (33 ms). At the conclusion of the experiment, participants 
were debriefed and informed that half the images had been fake. 

2.3. EEG recordings and preprocessing 

Continuous EEG data were recorded using a 64-electrode Brain 
Products EEG cap (Standard 64Ch actiCAP; GmbH, Herrsching, Ger
many) at a sample rate of 1000-Hz. Ag/AgCl active electrodes were 
placed in accordance with a 10/20 international system (Oostenveld & 
Praamstra, 2001). Electrode gel was applied to the scalp under each 
electrode, aiming to reduce signal impedances to below 10 kΩ. Stimulus 
onset was synchronised to the EEG using transistor-transistor logic (TTL) 
pulses from the stimulus presentation computer to a separate recording 
computer. Pre-processing of the EEG data was computed offline using 
EEGLAB (Delorme & Makeig, 2004). The continuous EEG data were 
filtered with a high-pass filter of 0.1-Hz and a low-pass filter of 100-Hz 
and re-referenced to the average of all electrodes. No notch filter was 
applied. The data were then separated into epochs corresponding to 
stimulus presentation ranging from 100 ms to 1000 ms pre- and post- 
stimulus onset. This produced 180,000 pre-processed epochs for each 
participant. 

2.4. Decoding analysis 

Time-resolved MVPA decoding analysis of EEG data was imple
mented in MATLAB with the CoSMoMVPA toolbox (Oosterhof et al., 
2016). We used Linear Discriminant Analysis (LDA) classifiers as 
implemented in CoSMoMVPA in a leave-one-out cross-validation 
scheme. The LDA classifier estimated the probability of EEG data 
belonging to a certain group (e.g., real or fake) where the higher esti
mate is the predicted class (Grootswagers, Wardle, & Carlson, 2017). 
This was repeated at every time point, for every exemplar, and averaged 
across subjects to generate the mean cross-validation decoding perfor
mance at each time point. Classification performance was assessed using 
Bayesian statistics and frequentist statistics to compare decoding accu
racy to chance level (>50% for real versus fake decoding or 33% for 3- 
way category decoding) as described below. An above-chance decoding 
accuracy informs us that the EEG data contains information relevant to 
the contrast of interest (Grootswagers et al., 2017; Olivetti, Veer
amachaneni, & Nowakowska, 2012; Pereira, Mitchell, & Botvinick, 
2009). 

2.5. Category decoding analysis 

We performed a category decoding analysis to investigate whether 
there were meaningful differences among the face, car, and bedroom 
stimuli. We used an image-by-sequence cross-validation approach 
(Grootswagers et al., 2019), which entailed training the classifier on all- 
but-one image from each of the three categories from all-but-one 
sequence and testing the classifier on left-out images from the left-out 

sequence. This ensured that the classifier had to generalize to novel 
exemplars to successfully decode between faces, cars, and bedrooms for 
each of the real, realistic, and unrealistic conditions (Carlson, Tovar, 
Alink, & Kriegeskorte, 2013). Decoding accuracy was characterized by 
an above-chance classifier performance (>33%). Contrasts were broken 
down into presentation rate (5 Hz or 20 Hz), realism level (real, unre
alistic, realistic), and configuration (upright, inverted). 

2.6. Real versus fake decoding analysis 

We investigated whether real and fake image differences could be 
decoded from the EEG data using a leave-one-out cross-validation 
approach. This approach involved dividing the data into training and 
testing sets whereby the classifiers are trained on all stimuli but one pair 
of real and fake stimuli from all but one RSVP sequence and then tested 
on the left-out stimulus pair from the remaining sequence. This ensured 
that the classifier had to generalise to the novel stimulus to successfully 
decode the category (i.e., real or fake) and could not rely on individual 
image-specific properties. Real stimuli were decoded against fake 
stimuli. Contrasts were broken down into presentation rate (5 Hz or 20 
Hz), realism level (unrealistic, realistic), and configuration (upright, 
inverted). Thus, there were 8 decoded contrast combinations per image 
category. Given the large face processing literature and our clear hy
potheses regarding faces, we were mainly interested in fake versus real 
decoding of faces; results from the car and bedroom categories are 
included for completeness on https://osf.io/n2z73/. 

To map the spatial distribution of the signal, we repeated the real 
versus fake decoding analysis at separate locations on the scalp. For each 
channel, we selected the four closest neighbouring channels and per
formed the exact same decoding analysis described above on just this 
local cluster of channels, storing the resulting accuracies at the centre 
channel. This results in a channel topography of decoding results that 
provides insight into the spatial origins of the signal. 

As an exploratory follow-up analysis, we examined the relationship 
between real-fake decoding accuracy from the EEG data and behav
ioural accuracies obtained from the online participants for each indi
vidual image (Grootswagers, Cichy, & Carlson, 2018; Ritchie, Kaplan, & 
Klein, 2019). For each subject and each time point in the real-fake 
decoding analysis, we correlated (Spearman’s ρ) the image-specific 
average classifier accuracies with their corresponding behavioural ac
curacies. We then performed group level inference on the resulting 
subject-wise time-varying brain-behaviour correlations. If successful 
real/fake decoding in EEG reflects the real/fake signal that is ‘used’ by 
the brain to guide behaviour (Grootswagers et al., 2018; Ritchie et al., 
2019), then we would expect a positive correlation between image- 
specific EEG-classification accuracy and behavioural accuracy. That is, 
faces identified as real or fake by the classifier would also be identified 
as real or fake by the participants. 

2.7. Statistical inference 

For the decoding and behavioural analyses, we used Bayesian sta
tistics to characterize evidence arising from the data as either supporting 
the presence (alternative hypothesis) or absence (null hypothesis) of an 
effect(Dienes, 2011; Rouder, Speckman, Sun, Morey, & Iverson, 2009; 
Teichmann, Moerel, Baker, & Grootswagers, 2022; Wagenmakers, 2007; 
Jeffreys, 1998). We used a standard Jeffreys-Zellner-Siow (JZS) prior 
(Rouder, Speckman, Sun, Morey, & Iverson, 2009) to calculate the null 
and alternative hypotheses, which is a Cauchy distribution with a scale 
factor of 0.707 to determine the evidence of above-chance performance 
(e.g., >50% decoding) and a null-hypothesis point prior at chance-level 
(Morey & Rouder, 2011). For ease of interpretation, we thresholded 
Bayes factor (BF) values > 10 for strong evidence for the alternative 
hypothesis and BF values < 1/3 as evidence in favour of the null hy
pothesis (Morey & Rouder, 2011). For the decoding analyses, BFs serve 
as continuous degrees of evidence across multiple time points and not 
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specific hypothesis testing at single time points. Thus, isolated BFs at 
single time points which did not reach threshold were not treated as 
evidence for either hypothesis if the surrounding points did not reach 
threshold or were interspersed with below-threshold values. Rather, BFs 
were treated as evidence if surrounding points were at threshold (Mai, 
Grootswagers, & Carlson, 2019). For the decoding analyses, we, in 
addition, computed corresponding frequentist statistics using sign- 
permutation tests (1000 permutations) and Monte-Carlo cluster statis
tics with threshold-free cluster enhancement (TFCE) as cluster-statistic 
(Smith & Nichols, 2009), corrected for multiple comparisons across 
time using the max-statistic method (Maris & Oostenveld, 2007). 

3. Results 

3.1. Behavioural performance 

We were interested in whether participants could correctly classify 
and discriminate between real and fake faces. We calculated the pro
portion of images that were judged correctly as real or fake for each of 
the realistic/unrealistic and upright/inverted conditions and aggregated 
the judgements over participants. The main findings are presented in 
Fig. 2. As indexed by a d’ discriminability analysis, we found that par
ticipants could reliably discriminate real from unrealistic faces (0.48 ±
0.08, BF = 57.19) but could not discriminate real from realistic faces 
(-0.17 ± 0.06, BF = 7.04). Orientation had little effect on discrimina
bility. Confusion matrices (Fig. 2B) indicate that observers could 
correctly classify realistic faces (63%, se = 0.026, BF > 100) and 

unrealistic fake faces (68.2%, se = 0.026, BF > 100). However, observers 
performed at chance (50.9%, se = 0.027, BF = 0.16) when it came to 
classifying real faces from unrealistic faces and well below chance at 
classifying real faces from realistic faces (31%, se = 0.023, BF > 100). 
Classification performances were similar for inverted faces. 

Overall, this demonstrates that although observers could reliably 
spot the fakes, they performed poorly at correctly labelling the real 
faces. Interestingly, participants had a below-chance discriminability for 
real and realistic faces. That is, observers overwhelmingly perceived 
realistic faces as appearing more real than the real faces consistent with 
other findings (Sanders et al., 2019). Importantly, inverting the faces 
had little effect on discriminability suggesting that detection was not 
reliant on configural or featural information (Tanaka, Kaiser, Hagen, & 
Pierce, 2014). 

3.2. Categorical decoding analysis 

To examine whether real and fake images evoked similar categorical 
decoding effects compared to the previous literature, we decoded image 
category (cars, faces, and bedrooms) at all levels of realism (real, real
istic, unrealistic), (Fig. 3). As expected, we observed similar category- 
related dynamics for the real, realistic, and unrealistic images across 
all conditions. At a 5 Hz presentation rate, we observed above-chance 
decoding for all categories at real, realistic, and unrealistic (Fig. 3A). 
Decoding emerged and remained above-chance from 100 ms until 700 
ms post-stimulus onset with an early peak at 120 ms, a second peak at 
200 ms, and a third peak at 250 ms-300 ms. 

Fig. 2. Behavioural discrimination of real and fake faces. A) In an upright (left) and inverted (right) configuration, discriminability for real/realistic (blue) faces 
was below chance, but above chance for real/unrealistic faces (orange). Performance was similar regardless of whether faces were upright or inverted. Bars show 
mean and standard error. Each circle represents the response of one subject in one condition. The Bayes Factors (displayed above the x-axis) compute the evidence for 
a difference from chance discriminability (50% accuracy), and difference between conditions (stimulus and orientation). B) Confusion matrices display the results 
from the 4 behavioural categorisation conditions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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We then tested how category decoding was affected by our control 
manipulations (inversion and presentation rate). We observed similar 
above-chance decoding for all categorical and realism levels upon 
inversion (Fig. 3B) and at a 20 Hz presentation rate (Fig. 3C), albeit less 
pronounced with simultaneous stimulus inversion and 20 Hz presenta
tion (Fig. 3D). When upright and inverted, faces, cars, and bedrooms 
could be decoded at all levels of realism with similar temporal dynamics 
reported elsewhere (Grootswagers et al., 2019; Grootswagers et al., 
2017). 

3.3. Decoding realness from EEG: Real vs fake faces 

To determine if the brain could distinguish real from fake, we then 
investigated differences in neural patterns evoked from real and fake 
faces. At 5 Hz and upright (Fig. 4A), above-chance decoding emerged 
and peaked for unrealistic faces at around 100 ms (M = 53.0%), 200 ms 
(M = 52.7%), and 300 ms (M = 53.05%, BF > 10) and fell below-chance 
at approximately 370 ms (BF < 1/3). This decodability is reflective of 
early, rapid, low-level image perception followed by a later, higher- 

level, holistic decoding consistent with the temporal unfolding of face 
perception (Dobs, Isik, Pantazis, & Kanwisher, 2019; Balas & Koldewyn, 
2013; Mühlberger et al., 2009). For realistic faces, decoding emerged at 
around 170 ms, peaked at around 200 ms (M = 52.1%), and remained 
above-chance until approximately 240 ms (BF > 10), suggesting a 
higher-level basis for discrimination of realistic and real faces. Although 
observers had trouble distinguishing real from fake faces and tended to 
overclassify fake faces, the EEG data contained signal information 
relevant to this distinction which meaningfully differed between real
istic and unrealistic, and this signal appeared to be constrained to a 
relatively short stage of processing. 

If the information that we were decoding at 5 Hz was reliant on 
image features rather than a face-processing effect, then we would 
predict that we could achieve a similar decoding result on inverted faces. 
However, at 5 Hz and inverted (Fig. 4B), only unrealistic faces were 
decodable from real faces. Above-chance decoding emerged at around 
100 ms (BF > 10), peaked at around 170 ms (M = 53.9%), and was at 
chance again at approximately 250 ms (BF < 1/3). In contrast, realistic 
faces remained at chance and were not decodable from real faces (BF <

Fig. 3. Summary of category decoding using orientation and presentation rate manipulation. A classifier was trained on EEG data from all categories, ori
entations, and presentation rates. Above-chance distinct category decoding was found for real (blue), realistic (orange), and unrealistic (green) stimuli regardless of 
orientation, presentation rate or stimuli type. Lines represent decoding accuracy over time with shaded areas displaying standard error across subjects (N = 22). 
Thresholded p-values below 0.05 are displayed under each pot. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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1/3). This suggests that inversion, known to disrupt configural processing 
of faces, is similarly disrupting a face-specific mechanism accounting for 
decoding differences between realistic and unrealistic faces (Jacques, 
d’Arripe, & Rossion, 2007; Rossion et al., 2000). 

An alternative way to disrupt face-processing is to use faster pre
sentation rates (Collins, Robinson, & Behrmann, 2018). At 20 Hz and 
upright (Fig. 4C), above-chance decoding emerged and peaked (M =
52.5%) for unrealistic faces at around 100 ms and was sustained until 
approximately 170 ms (BF > 10). Decodability for realistic faces 
emerged and peaked at around 170 ms (M = 51.8%) and remained 
above chance until around 230 ms (BF > 10), showing very similar 
dynamics to the upright condition. Faster presentation rates have been 
shown to limit the extent and capacity for visual processing (Robinson 
et al., 2019), but this result suggests short presentations can still yield 

information informative of real versus fake face distinctions, albeit with 
numerically lower and less sustained decoding accuracy. 

Lastly, at 20 Hz and inverted (Fig. 4D), decoding performance was at 
chance for realistic and unrealistic faces (BF < 1/3). This suggests that 
inversion plus a faster presentation rate is enough for the EEG data to no 
longer contain any relevant information pertaining to real versus fake 
face distinctions. In other words, configural processing has been dis
rupted to an extent that activity patterns evoked from fake faces were 
not differentiable from activity evoked from real faces. As expected, real 
versus fake bedroom and car decoding was not so evident and can be 
found on https://osf.io/n2z73/. 

Finally, we examined the relationship between real-fake decoding 
accuracy and behavioural classification accuracy across the images. If 
successful real/fake decoding in EEG reflects the real/fake signal that is 

Fig. 4. Decoding real versus fake faces. Different effects of orientation and presentation rate on decoding real and fake faces. Plots show decoding performance 
over time for real and fake (realistic or unrealistic) faces in upright and inverted orientations and at 5 Hz and 20 Hz presentation rates. The lines in each plot indicate 
classifier accuracy from time of stimulus onset until 800 ms, with shaded areas showing standard errors across each subject (N = 22). Time-varying topographies are 
presented below for visualization purposes. Each plot was averaged across 100 ms time bins where darker shades indicate contribution of channels to real/fake 
decoding. In the lowest panel, thresholded p-values and Bayes Factors indicate above-chance decoding or non-zero differences. 
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‘used’ by the brain to guide behaviour (Grootswagers et al., 2018; 
Ritchie et al., 2019) then we would predict to observe a positive cor
relation between image-specific EEG-classification accuracy and 
behavioural accuracy. Fig. 5 shows the time-varying correlations for the 
upright (Fig. 5A) and inverted 5 Hz (Fig. 5B) conditions. We did not 
perform this analysis for the 20 Hz conditions due to limited above- 
chance decoding. We observed evidence for a positive brain-behaviour 
correlation around 170 ms for the upright and inverted unrealistic 
faces, which is consistent with time points of above-chance decoding 
(Fig. 4A). This result suggests that, at least for the unrealistic faces, the 
signal that is used by the classifier for real/fake distinction could be used 
by the brain to make the real/fake decision (Grootswagers et al., 2018; 
Ritchie et al., 2019). 

4. Discussion 

There is growing concern that realism is advancing at such a rate that 
humans will have difficulty discerning between what is real and what is 
fake (Fletcher, 2018; Khodabakhsh, Ramachandra, & Busch, 2019; 
Nightingale et al., 2017; Shen et al., 2019). Our results demonstrate that 
given only a brief glimpse, observers may be able to spot fake faces. 
However, they have a harder time discerning real faces from fake faces 
and, in some instances, believed fake faces to be more real than real 
faces. However, using time-resolved EEG and multivariate pattern 
classification methods, we found that it was possible to decode both 
unrealistic and realistic faces from real faces using brain activity. This 
dissociation between behaviour and neural responses for realistic faces 
yields important new evidence about fake face perception as well as 
implications involving the increasingly realistic class of GAN-generated 
faces. 

Our behavioural results are consistent with previous research that 
suggests that observers typically display difficulties with correctly 
discriminating between real and realistic faces despite face expertise 
(Holmes et al., 2016; Nightingale et al., 2017; Sanders et al., 2019; Zhou 
et al., 2019). For example, in a two-alternative forced-choice task, par
ticipants would judge realistic face masks as being more realistic than 
human faces in a third of all trials (Sanders et al., 2019). Artificial faces 

made by GANs have also recently received attention and have been 
similarly demonstrated to fool observers (Hulzebosch et al., 2020; Isola, 
Zhu, Zhou, & Efros, 2017; Zhou et al., 2019; Liu, Qi, & Torr, 2020). As 
expected, we found that it was harder to spot the realistic faces than the 
unrealistic faces, although observers were able to correctly classify the 
fakes. However, participants struggled at discriminating real from 
realistic and overclassified fake faces as being real. We presented faces 
for 200 ms, which could be considered a brief exposure period, but the 
images were not masked so processing would have continued even after 
the images had disappeared (Robinson et al., 2019). Given a long 
enough time to observe, Liu et al. (2020) found that identifying artefacts 
such as “asymmetrical eyes” and “irregular teeth” in artificial faces can 
assist in spotting fakes. Presumably, assessing such details requires more 
time and eye movements. Indeed, observers can be trained to reliably 
spot fake faces by learning what to look for (Hills & Lewis, 2006; Tanaka 
& Farah, 1993). Here, our primary focus was examining the first 
impression responses of naïve observers by limiting the time spent 
looking at each face and giving participants unlimited time to make a 
response. With some added training it remains to be seen whether ob
servers may be able to use that information to make a more accurate 
decision. Future studies may investigate whether training observers on 
GAN-generated faces and whether allowing for longer stimulus dura
tions enhances detection. 

We found that although observers may have difficulties discrimi
nating between real and realistic faces, they have distinct representa
tions in the human visual system. Given that category decoding was 
most pronounced and sustained in the 5 Hz and upright condition, 
enough for each image to reach a high-level representation in the brain 
(Grootswagers et al., 2019), we expected real/fake decoding to be most 
pronounced in this condition too. Above-chance decoding represents the 
classifier successfully distinguishing neural activity evoked from real 
and fake faces, namely, real/fake differences. Critically, a leave-one-out 
cross-validation approach (see methods) ensured that the classifier 
could not learn to categorise the EEG data based on visual features or 
low-level properties belonging to specific faces, but rather had to 
generalize learned category information (real/fake) onto novel stimuli 
(Carlson, Tovar, Alink, & Kriegeskorte, 2013; Grootswagers, Wardle, & 

Fig. 5. Correlating behavioural accuracy with decoding. Plots show the relationship between image-specific EEG decoding accuracy and behavioural accuracy 
over time for the 5 Hz upright condition (left) and 5 Hz inverted condition (right). The lines indicate correlation from time of stimulus onset until 800 ms for realistic 
versus real faces (orange) and unrealistic versus real faces (green), with shaded areas showing standard errors. In the lowest panel, thresholded p-values and Bayes 
Factors indicate above-chance correlation or non-zero differences. Positive brain-behaviour correlations can be seen at around 170 ms and 270 ms for upright 
unrealistic faces (green) and at around 150 ms-200 ms for inverted unrealistic faces (BF > 10). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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Carlson, 2017; Teichmann et al., 2020). This guaranteed that the clas
sifier performance related to a group-level distinction rather than to 
individual image-level properties. 

Indeed, for the 5 Hz, upright condition, we found that the classifier 
successfully discriminated between unrealistic/real as well as realistic/ 
real faces (Fig. 4A). Despite the low decoding accuracy, suggestive of a 
slight effect, group-level results were highly reliable, indicating clear 
representational differences. Decoding for unrealistic faces displayed a 
triple peak pattern, emerging at around 100 ms and maintained until 
around 370 ms. Early decoding differences are consistent with rapid face 
detection and face-specific processing (Rossion, Torfs, Jacques, & Liu- 
Shuang, 2015; Dobs et al., 2019; Crouzet, Kirchner, & Thorpe, 2010; 
Wardle, Taubert, Teichmann, & Baker, 2020). The latter two peaks (at 
around 170–200 ms and 270–320 ms) have been similarly demonstrated 
to emerge in real versus artificial face perception (Wheatley et al., 2011; 
Balas & Koldewyn, 2013; Sagiv & Bentin, 2001; Schindler et al., 2017, 
Schindler, Bruchmann, Bublatzky, & Straube, 2019, Wardle et al., 
2020). Schindler et al. (2017) suggest that early-stage N170 processing 
is related to assessing the structural configuration of faces as seen by a 
greater occipital involvement whilst the later-staged LPP, seen to in
crease linearly with face realism, suggests a deeper person-related, se
mantic involvement (also see Abdel Rahman, 2011, Taylor, Shehzad, & 
McCarthy, 2016). Differences at the triple peak correspond to N250 and 
P300 components typically associated with face familiarity (Collins 
et al., 2018) and semantic information (Tanaka, Curran, Porterfield, & 
Collins, 2006), the latter especially important for behaviour (Hanso, 
Bachmann, & Murd, 2010). In contrast, realistic/real decoding dis
played a single-peak emergence between around 170 ms to 240 ms 
indicating a difference in processing between realistic and unrealistic 
faces. Namely, that differences in perception between real and realistic 
faces were constrained to the 170 ms time period. Indeed, in comparing 
human faces to doll faces and artificial faces, others have shown that 
only the human faces typically evoke sustained neural responses beyond 
the N170 component necessary for higher-order perception (Balas & 
Koldewyn, 2013; Wheatley et al., 2011). Balas and Koldewyn (2013) 
found that the N170 was better characterised by encoding deviations 
from facial appearance than it was for animacy perception. In other 
words, realistic faces were perceived as configurally different to real 
faces, but only unrealistic faces engaged later processing necessary for 
high-order animacy or familiarity perception. Overall, earlier decoding 
for unrealistic faces, consistent with apparent low-level image differ
ences (Fig. 1C), suggests that early and low to mid-level processing 
differences may account for decodability between real and unrealistic 
faces. The decoding for realistic faces, by contrast, emerges later and is 
constrained to the 170 ms time period, suggesting a face-specific con
figural process may be responsible for this distinction. 

Assessing fake/real decoding for inverted faces allows us to evaluate 
whether the fake/real distinction relies on mechanisms that are 
responsible for the superiority in face recognition for upright faces 
relative to inverted faces. Inversion disrupts the configural processing of 
faces by making them appear more like objects whilst retaining low- 
level stimulus attributes (Eimer, 2000; Leder & Bruce, 2000; Rousse
let, Macé, & Fabre-Thorpe, 2003). Firstly, we found that inversion led to 
the disruption of decoding for realistic faces (Fig. 4B). In contrast, we 
found that decoding for unrealistic inverted faces was preserved but less 
sustained when compared to upright. The peak in decoding may be 
reflective of increased featural processing for inverted unrealistic faces, 
also seen to occur with distorted or ‘Thatcherized’ faces (Carbon, 
Schweinberger, Kaufmann, & Leder, 2005; Milivojevic, Clapp, Johnson, 
& Corballis, 2003). The lack of above-chance decoding for inverted 
realistic faces may reflect the contribution of high-level, expertise- 
driven capabilities for upright fake face detection when face processing 
mechanisms, rather than object processing, were available. Overall, we 
found that upon stimulus inversion our decoding results were consistent 
with a face-specific or expertise response, such that realistic faces could 
not be discriminated from real faces when typical face perception was 

disrupted, even though the same visual features were present. 
The presentation of images at a faster presentation rate limits the 

consolidation of each image and build-up of higher-order representation 
(Grootswagers et al., 2019)., allowing an analysis of the contribution of 
low-level processing. At a faster presentation rate of 20 Hz, we found 
that upright fake faces could be discriminated from real faces for the 
realistic and unrealistic conditions (Fig. 4C). Indeed, early, low-level 
visual processing is fairly unaffected by image presentation durations 
(Grootswagers et al., 2019). Observing less sustained decoding is 
consistent with the limited capacity and extent of visual processing since 
each image is masked by every successive image to a greater extent and 
therefore places limits on visual processing compared to a slower pre
sentation rate (Collins et al., 2018; Robinson et al., 2019). Additionally, 
higher-level, identity or semantically related face information discern
ible in the slow condition was possibly limited at the faster presentation 
rate consistent with Collins et al. (2018). In sum, we found that unre
alistic faces could be decoded upon inversion and at a faster presentation 
rate suggesting the contribution of low-level visual differences. By 
contrast, we could not decode realistic faces when inverted, but we 
could decode at a faster presentation rate, indicating that fake/real 
perception was likely driven by expertise and face-specific processing. 

Interestingly, we found that neural differences between real and 
realistic faces did not translate into a reliable behavioural decision for 
realistic face discrimination at the population level. One possibility may 
be related to the small size of the decoded neural signal, which although 
reliably above-chance, may not be strong enough to be reflected in 
behaviour. We did, however, find a brain-behaviour correlation at 
around 150 ms-200 ms for unrealistic versus real faces, suggesting that 
this time period of processing is important for behaviour. However, the 
same correlation was not observed for the realistic faces. One possibility 
is that whilst our data indicates that a realistic/real signal is present, this 
signal gets ‘lost’ in the visual hierarchy and consequently remains un
informative for behaviour. For instance, although animacy catego
risation can be decoded throughout the entire ventral visual stream, this 
information is most suitably formatted for behaviour in higher-level 
visual areas like the ventral occipital and parahippocampal cortex 
(Grootswagers et al., 2018). Since decoding unrealistic/real faces was 
more sustained than realistic/real faces, associated more with in-depth 
face processing at later stages (i.e., LPP), this level of extended pro
cessing may be required for behavioural “readout” (see de-Wit et al., 
2016; Grootswagers et al., 2018; Ritchie et al., 2019). Yet, the highest 
brain-behaviour correlation for unrealistic faces was observed at 
150–200 ms, a time when decoding was not reliably different between 
the realistic and unrealistic conditions. This has several implications. In 
an applied setting such as cyber security or Deepfakes, examining the 
detection ability for realistic faces might be best pursued using machine 
learning classifiers applied to neuroimaging data rather than targeting 
behavioural performance. As we have shown, the former contains 
discriminative relevance whereas observers may actually perform worse 
than chance given the decision (and a brief glance). Another related 
possibility is that the decodable real/fake face signal is operating below 
conscious access and therefore is not picked up by our behavioural task. 
This is reminiscent of findings that individuals with prosopagnosia who 
cannot behaviourally classify or recognise faces as familiar or unfamiliar 
nevertheless display stronger autonomic responses to familiar faces than 
unfamiliar faces (Tranel & Damasio, 1985). Similarly, what we have 
shown in this study is that whilst we could accurately decode the dif
ference between real and realistic faces from neural activity, that dif
ference was not seen behaviourally. Instead, observers incorrectly 
identified 69% of the real faces as being fake. Still, a different behav
ioural task may have yielded a better performance. Forced to respond 
via a two-alternative forced-choice task or an implicit task such as face 
familiarity or trustworthiness may have engaged different behavioural 
processes more conducive for real/fake face discrimination. For 
instance, behaviourally categorising faces as threatening, competent, or 
trustworthy has been shown to occur as quickly as 33–100 ms after onset 
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(Bar, Neta, & Linz, 2006; Willis & Todorov, 2006). Conversely, real or 
fake judgments may occur as late as 240 ms after stimulus presentation 
(Zhou et al., 2019). Therefore, future work could investigate whether 
judgments about face trustworthiness or threat may be a better cue for 
detection than real or fake. 

In sum, we found that there is a dissociation between the ability of 
participants to categorise faces as real or fake and the decodability of 
this distinction in the brain. In other words, although the brain can 
‘recognise’ the difference between real and realistic faces, observers 
cannot consciously tell them apart. Our findings of the dissociation be
tween brain response and behaviour have implications for how we study 
fake face perception, the questions we pose when asking about fake 
image identification, and the possible ways in which we can establish 
protective standards against fake image misuse. 

Future studies may investigate the contribution of face expertise for 
decoding and behaviour. Expertise influences how deeply and config
urally a face is perceived allowing for more subtle identification of 
spatial relations, features, and same-race faces (Wong, Palmeri, & 
Gauthier, 2009; Tanaka, 2001; Tanaka & Taylor, 1991; Hancock & 
Rhodes, 2008; Meissner & Brigham, 2001). Indeed, individuals with 
digital manipulation training and experience (i.e., photo-editing and 
photography) are more able to identify fake images than non- 
experienced individuals (Shen et al., 2019). Having the same partici
pants participate in both the EEG and behaviour experiments may be 
useful in exploring inter-individual differences and the influence of 
expertise. 

In conclusion, we investigated to what extent state-of-the-art GAN 
faces made by AI fool human observers. Using behavioural and neuro
imaging methods we found that it was possible to reliably detect AI- 
generated fake images using EEG activity given only a brief glance, 
even though observers could not consciously report seeing differences. 
Given that observers are already struggling with differentiating between 
fake and real faces, it is of immediate and practical concern to further 
investigate the important ways in which the brain can tell the two apart. 
It is becoming increasingly possible to rapidly and effortlessly generate 
realistic fake images, videos, writing, and multimedia that are practi
cally indiscernible from real (Radford et al., 2019; Maras & Alexandrou, 
2019; Asensio et al., 2014; Ledig et al., 2017). This capacity is only going 
to become more widespread and has profound implications for cyber
security, fake news, detection bypass, and social media (Damiani, 2019; 
Fletcher, 2018; Maddocks, 2020). Already, a newer and more realistic 
set of images and faces have been generated by GANs that might chal
lenge human perception more drastically than we have investigated here 
(Karras et al., 2020). Understanding the dissociation between brain and 
behaviour for fake face detection will have practical implications for the 
way we tackle the potentially detrimental and universal spread of arti
ficially generated information. 
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