
1 

 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

Multiple Neural Modules Orchestrate Conflict Processing 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

Melinda Sabo 1*, Manuel Varlet 2,3, & Tijl Grootswagers 2,4 18 

 19 
1 Leibniz Research Centre for Working Environment and Human Factors, Dortmund, 20 

Germany 21 
2 The MARCS Institute for Brain, Behaviour and Development, Western Sydney 22 

University, Sydney Australia 23 
3 School of Psychology, Western Sydney University, Australia 24 

4 School of Computer, Data and Mathematical Sciences, Western Sydney University, 25 

Australia 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

Author Note 35 

Melinda Sabo         https://orcid.org/0000-0001-8585-7115 36 

Manuel Varlet        https://orcid.org/ 0000-0001-5772-2061 37 

Tijl Grootswagers  https://orcid.org/0000-0002-7961-5002 38 

 39 

*Correspondence concerning this article should be addressed to Melinda Sabo, 40 

Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67 41 

44139 Dortmund, Germany 42 

E-mail: melinda.sabo2@gmail.com  43 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2025. ; https://doi.org/10.1101/2025.02.21.639534doi: bioRxiv preprint 

https://orcid.org/0000-0001-8585-7115
https://orcid.org/0000-0001-5772-2061
https://orcid.org/0000-0002-7961-5002
https://doi.org/10.1101/2025.02.21.639534
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract 1 

 2 

Cognitive conflict is a ubiquitous aspect of our daily life, yet its underlying neural mechanisms 3 

remain debated. Competing theories propose that conflict processing is governed by either a 4 

domain-general system, multiple conflict-specific modules, or both types of systems, as 5 

evidenced by hybrid accounts. The aim of the current study was to settle this debate. We 6 

analyzed electroencephalogram (EEG) data from 507 participants (ages 20–70) who completed 7 

three conflict tasks: a change detection, a Simon, and a Stroop task. A novel decoding approach 8 

was adopted to distinguish between conflict and non-conflict trials. While within-task decoding 9 

showed robust effects, decoding across tasks yielded chance-level evidence. These findings 10 

support the idea that conflict processing relies on multiple conflict specific modules tailored to 11 

task-specific demands. By leveraging a large, diverse sample and a data-driven analysis, this 12 

study provides compelling evidence for conflict-specific neural mechanisms, offering new 13 

insights into the nature of conflict resolution and cognitive control. 14 

 15 

Keywords: cognitive control, attention, Simon task, Stroop task, decoding, EEG  16 
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1. Introduction 1 

In our everyday life, we are constantly exposed to situations where we must overcome conflict. 2 

It is often the case that our cognitive system triggers an automatic response, while the situation 3 

requires a different, competing response. For example, if someone accustomed to driving in a 4 

country where vehicles travel on the left side of the road visits a country where driving occurs 5 

on the right side, they might instinctively look in the wrong direction when crossing the street. 6 

Overcoming this habitual response requires conscious effort and adjustment. This scenario 7 

exemplifies the type of cognitive conflict we must navigate. Such adaptations are made 8 

possible through cognitive control, a fundamental mechanism that allows humans to flexibly 9 

adjust to the ever-changing demands of the environment. 10 

 11 

Conflict processing has been extensively studied in laboratory settings using various 12 

experimental paradigms. One prominent example is the Stroop task (Heidlmayr et al., 2020; 13 

Parris et al., 2022; Stroop, 1935), where participants are shown a color word (e.g., "red") 14 

written in incongruent ink (e.g., blue). Because the color and word meaning are processed 15 

simultaneously, the irrelevant word meaning interferes with the display color and leads to 16 

conflict. Another well-known paradigm is the Simon task. In this case, participants are required 17 

to respond with either the left or right hand based on a symbol's meaning. Conflict arises when 18 

the symbol’s spatial location (e.g., appearing on the left) does not align with the required 19 

response hand (e.g., right hand) (Cespón et al., 2020; Hommel, 2011; Leuthold, 2011; Simon, 20 

1969). Finally, conflict has also been investigated in change detection paradigms, where 21 

participants are required to report changes in a specific feature between two successively 22 

flashed stimuli (Schneider & Wascher, 2013; Wascher & Beste, 2010). Research across these 23 

different experimental paradigms revealed that conflict emerges when task-irrelevant changes 24 

are introduced, which compete with the task-relevant feature change, decreasing overall 25 

behavioral performance.   26 

 27 

The underlying conflict processing and control mechanisms have been and remain the subject 28 

of many debates. According to one of the most prominent conflict-monitoring models, the brain 29 

manages conflict through a domain-general conflict-control loop (Botvinick et al., 2001). This 30 

loop includes a detection module (linked to the anterior cingulate cortex) for identifying 31 

conflict and a control module (linked to the prefrontal cortex) for resolving it and coordinating 32 

adaptive responses (Gratton et al., 2018). A central assumption of this model is that this 33 

mechanism is domain-general, so the same brain regions and networks are active independently 34 

of task or conflict type (Botvinick et al., 2001).  35 

 36 

While domain-general conflict processing models suggest a unified neural mechanism for 37 

conflict detection and control, subsequent findings have called this assumption into question. 38 

Emerging research suggests that different types of conflict—such as stimulus-based conflict 39 

(e.g., Stroop tasks) and response-based conflict (e.g., Simon tasks)—elicit distinct neural 40 

activation patterns. Stimulus-based conflicts are associated with frontal and parietal activation, 41 

whereas response-based conflicts engage motor and premotor areas (Cespón et al., 2020; 42 

Egner, 2008; H. Li et al., 2019; Parris et al., 2019, 2022; Zmigrod et al., 2016). Behavioral 43 

studies further support these findings, suggesting that conflict processing and control 44 

frequently depend on task-specific strategies (Blais & Bunge, 2010; Funes et al., 2010; Kim et 45 

al., 2010; Scerrati et al., 2017). Together, these studies suggest that the neural mechanisms for 46 

conflict resolution may be modular and task-dependent, challenging the domain-general 47 

perspective (for a review see, Egner, 2008).  48 
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Existing literature thus suggests the emergence of two competing models: one supporting a 1 

unified, domain-general mechanism (Botvinick et al., 2001; Kan et al., 2013) and the other 2 

advocating for multiple conflict-specific modules (Egner, 2008; Egner et al., 2007; Funes et 3 

al., 2010; Kim et al., 2010; Scerrati et al., 2017; Zmigrod et al., 2016). More recently, a hybrid 4 

model has also been proposed, suggesting that the brain integrates a general mechanism with 5 

specialized sub-modules to handle distinct conflict types (Q. Li et al., 2017). However, the 6 

hybrid perspective has been so far only supported by limited evidence, leaving the debate 7 

unresolved and highlighting the need for further investigation. 8 

 9 

Therefore, the current study seeks to clarify the brain mechanisms underlying conflict 10 

processing and control. Specifically, we examine whether conflict processing is governed by 11 

(i) a domain-general conflict processing module with a corresponding unified neural 12 

mechanism, (ii) multiple highly specialized conflict-specific modules with fully distinct neural 13 

mechanisms, or (iii) a hybrid architecture involving both domain-general, as well as conflict-14 

specific sub-modules. To address this question, we leverage a large electroencephalogram 15 

(EEG) dataset collected from 507 participants, spanning an age range of 20–70 years, which is 16 

representative of the general population. Participants performed three cognitive tasks 17 

traditionally associated with conflict processing: a change detection task involving task-18 

relevant and irrelevant features, a Simon task, and a Stroop task (see Figure 1). Notably, while 19 

the Stroop task primarily involves stimulus conflict and the Simon involves response conflict, 20 

the change detection task introduced in this study incorporates both types of conflict. These 21 

three tasks are therefore well-suited not only to evaluate the first two models but also to assess 22 

the plausibility of the hybrid model. 23 

 24 

Using multivariate pattern analysis, we examine whether a linear classifier can learn to 25 

distinguish conflict from non-conflict trials based on EEG data. First, we train a classifier to 26 

identify conflict-related patterns within each task. We not only run this analysis in the time 27 

domain, but also in the frequency domain, as previous research highlights the role of theta-28 

band activity in conflict processing (Hanslmayr et al., 2008; Nigbur et al., 2011). Next, we 29 

investigate whether these conflict signals generalize across tasks by training the classifier on 30 

one task (or a combination of tasks) and evaluating its performance on the remaining task, a 31 

process referred to as cross-task decoding. In this context, three outcomes are possible. The 32 

domain-general conflict processing perspective predicts above-chance decoding performance 33 

for both within-and cross-task decoding. Alternatively, under the multiple conflict-specific 34 

modules framework, only within-task decoding is expected to produce statistically reliable 35 

results. Finally, the hybrid model entails an above-chance decoding accuracy for the within-36 

task procedure, but not for all cross-task decoding combinations. Specifically, we expect 37 

above-chance decoding accuracy when pairing the change-detection task with either the Simon 38 

or Stroop tasks due to some shared conflict-processing mechanisms. However, given the 39 

substantial differences between the Simon and Stroop tasks, cross-task decoding in this case 40 

should remain at chance level. To foreshadow our findings, both time-domain and frequency-41 

domain analyses showed that conflict decoding was successful within individual tasks. 42 

However, cross-task decoding analyses indicated that the conflict signal did not generalize 43 

across tasks, supporting the predictions of the multiple conflict-specific modules framework.  44 

2. Results 45 

The current study investigates the neural mechanisms of conflict processing to determine 46 

whether they align with a domain-general, conflict-specific, or hybrid model. We recorded 47 

EEG data from 507 participants (aged 20–70) during three conflict tasks: a change detection 48 
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task, the Simon task, and the Stroop task (Figure 1). While the Simon and Stroop tasks 1 

primarily target response-level and stimulus-level conflict, respectively, the change detection 2 

task uniquely integrates both. Analyzing such a large and diverse dataset mitigates common 3 

challenges in small-sample EEG research, such as low statistical power and noise-related 4 

unreliability. Furthermore, our novel cross-task decoding approach avoids assumptions about 5 

specific underlying neural components or activation shared across tasks, relying instead on the 6 

classifier to detect these regularities. Together, these methodological strengths make our study 7 

well-suited to addressing this critical question and providing robust evidence that settles a long-8 

standing debate. 9 

Figure 1. Overview of experimental tasks involving conflict at different levels. (a) Change detection task: 10 
Participants viewed two squares on either side of a fixation cross. Stimuli could include a luminance change (non-11 
conflict), a luminance and orientation change on the same side (non-conflict), or a luminance and orientation 12 
change on opposite sides (conflict). Participants responded to the change location, with trials separated by an 13 
inter-trial interval (ITI) of 500–800 ms. (b) Simon task: Participants responded to a letter presented on either side 14 
of the screen (H or N) using a spatially compatible or incompatible hand. Non-conflict trials required spatially 15 
congruent responses, while conflict trials involved spatially incongruent responses, with an ITI of 500–800 ms. 16 
(c) Stroop task: Two blocks of trials were included: a Color Naming Block, in which participants named the ink 17 
color of a word regardless of the word’s meaning, and a Word Reading Block, in which participants read the 18 
word regardless of its ink color. The task included four colors, red, yellow, green, blue, displayed in German (i.e., 19 
“rot”, “gelb”, “grün”, “blau”). Responses were made using four keys corresponding to the four possible colors, 20 
and each trial began with a cue, followed by the target word and a variable ITI. 21 
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2.1.Successful within-task decoding – evidence from the time domain 1 

The first step in our analysis was to identify conflict-related signals within each task. To 2 

achieve this, we trained a linear classifier to distinguish between conflict and non-conflict trials 3 

separately for each task. This analysis was performed at each time point across the trial. As 4 

shown in Figure 2, the classifier successfully differentiated between conflict and non-conflict 5 

trials. Statistical analyses revealed the following significant clusters: (i) 96–1396 ms for the 6 

change detection task; (ii) smaller clusters ranging 124-188 ms, and a sustained cluster between 7 

224–1372 ms for the Simon task; (iii) 480–1112 ms for the Stroop naming task; (iv) smaller 8 

clusters between 720-1516 ms and a sustained cluster ranging 1524–1996 ms for the Stroop 9 

reading task. Figure 2 also highlights the range in which 95% of the response times for conflict 10 

and non-conflict trials occurred. Although there is some overlap between these time windows 11 

and the significant clusters, it is unlikely that response time differences between conflict and 12 

non-conflict trials drive these decoding effects. This assertion is supported by the topographical 13 

maps for these critical time windows, which highlight a predominantly centro-frontal 14 

localization of the effect. Notably, these maps closely resemble those reported in the existing 15 

literature (Gajewski & Falkenstein, 2015; Heidlmayr et al., 2020; Schneider et al., 2012). 16 

2.2.Successful within-task decoding – evidence from the frequency domain 17 

In a second step, we implemented an alternative within-task decoding analysis, which uses 18 

power values from different frequencies as a feature alongside electrodes. We ran a fast Fourier 19 

transform on the 0-1000 ms window following stimulus presentation and obtained power 20 

values for the frequency range between 1-50 Hz. We implemented this second within-task 21 

decoding procedure to determine whether power values from specific frequency ranges 22 

significantly contribute to decoding accuracy (Hanslmayr et al., 2008; Nigbur et al., 2011). 23 

Additionally, eliminating the time dimension from the analysis has the advantage of being less 24 

susceptible to response times differences between conflict and non-conflict trials. Within each 25 

participant, the analysis resulted in a single decoding accuracy value. 26 

To assess the statistical reliability of the results, we generated a null distribution of decoding 27 

accuracies by randomly shuffling conflict labels within each participant. The mean decoding 28 

accuracy was subsequently compared to the null distribution to determine its percentile rank. 29 

A value above the 95th percentile indicated significant above-chance decoding accuracy, while 30 

a value below this threshold was considered evidence for chance-level performance, supporting 31 

the null hypothesis. We obtained the following results: for the Simon, change detection, and 32 

Stroop naming tasks, the mean decoding accuracy was at the 100th percentile of the null 33 

distribution, demonstrating robust evidence for above-chance decoding performance (Figure 34 

3). In contrast, for the Stroop reading task, the decoding accuracy was at the 67th percentile, 35 

providing evidence that the classifier could not reliably differentiate between conflict vs. non-36 

conflict trials (Figure 3).  37 

 38 

As shown in Figure 3 (left panels), the null distributions do not center around 0.50 but instead 39 

fall consistently above 0.50 across all four distributions. This pattern aligns with prior research 40 

suggesting that classification accuracies under the null hypothesis are not symmetrically 41 

distributed around chance (Allefeld et al., 2016). 42 

 43 

Finally, we also conducted a searchlight analysis to examine whether specific frequency bands 44 

contributed more significantly to the decoding results. The analysis revealed that the highest 45 

decoding accuracy consistently occurred in the theta frequency range (3–7 Hz), which aligns 46 

with previous findings (Hanslmayr et al., 2008; Nigbur et al., 2011). Moreover, the  47 
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Figure 2. Decoding accuracy across time within task procedures for the (a) change detection task, (b) Simon 1 
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task, and (c, d) Stroop tasks. Dashed lines at 0.5 indicate chance level, while the shaded area around the average 1 
decoding accuracy represents the standard error of the mean. Blue, purple, yellow, and green dotted lines denote 2 
significant clusters identified through statistical analysis. Black and gray dotted lines indicate the time ranges 3 
during which 95% of the response times for conflict and non-conflict conditions occur. Each time point is 4 
annotated with the task-specific events. The topographical maps within each task panel were derived from 5 
searchlight analyses conducted at the specific time points indicated next to each map. The decoding accuracy 6 
limits for the topographical maps are as follows: (a) Change detection task: 0.50–0.514; (b) Simon task: 0.50–7 
0.515; (c) Stroop naming task: 0.50–0.508; (d) Stroop reading task: 0.50–0.508. 8 
 9 
topographical representation of decoding accuracies in the theta-band also revealed that these 10 

effects are maximal at fronto-central regions. 11 
 12 
Overall, the results from both procedures demonstrated that, within each task, conflict and non-13 

conflict trials exhibit distinct EEG patterns, allowing for successful classification. The only 14 

exception was the Stroop reading task. However, previous research suggests that the reading 15 

task does not involve the same degree of conflict as the naming task, potentially accounting for 16 

the observed outcome (Van Maanen et al., 2009). Additionally, the searchlight analysis 17 

revealed that theta frequency power plays a crucial role in decoding accuracy, with its effects 18 

exhibiting a fronto-central topographical distribution (Hanslmayr et al., 2008; Nigbur et al., 19 

2011). 20 

2.3. Non-generalizable conflict signal across tasks – evidence from cross-task decoding  21 

The cross-task decoding analysis was conducted to determine whether neural patterns 22 

associated with conflict processing generalize across different cognitive tasks. Notably, the 23 

Stroop reading task was excluded from this set of analyses due to its lack of robust evidence 24 

for within-task decoding. The first approach involved a pairwise decoding procedure, in which 25 

a classifier was trained on one task and tested on another one. Each task served once as a 26 

training dataset and once as a testing dataset. The decoding and statistical procedures were 27 

identical to those used in the within-task analyses described in Section 2.2, with both channel 28 

and frequency information between 1–50 Hz serving as input features. As shown in Figure 4A, 29 

the results of this analysis revealed that the mean decoding accuracy values did not deviate 30 

from chance level, as indicated by the percentiles at which the mean decoding accuracy values 31 

are situated relative to the null distribution: (a) 4.99th percentile for change detection-Simon 32 

task; (b) 84.15th percentile for change detection-Stroop Naming task; (c) 4.90th percentile for 33 

Simon-change detection task; (d) 59.92th percentile for Simon-Stroop naming task; (e) 14.72th 34 

percentile for Stroop naming-change detection tasks; (f) 56.29th percentile for Stroop naming-35 

Simon task. Overall, these results suggest evidence for a lack of conflict signal generalizability 36 

across tasks.  37 

 38 

Building on the within-task results, which suggested that decoding accuracy might be driven 39 

by theta-band power (3–7 Hz; cf., Hanslmayr et al., 2008; Nigbur et al., 2011), we refined the 40 

analysis by restricting input features to this frequency band. However, as illustrated in Figure 41 

4b, this adjustment produced the same pattern of results: evidence was found for chance-level 42 

decoding performance across all comparisons: (a) 44.60th percentile for change detection- 43 

Simon task; (b) 49.26th percentile for change detection-Stroop Naming task; (c) 16.08th 44 

percentile for Simon-change detection task; (d) 10.62th percentile for Simon-Stroop naming 45 

task; (e) 85.23th percentile for Stroop naming-change detection tasks; (f) 77.67th percentile for 46 

Stroop naming-Simon task. 47 
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 1 
Figure 3. Within-task decoding based on frequency-domain information. Panels (a–d) show the results of the 2 
second within-task decoding procedure performed on power values between 1–50 Hz. The left-side panels display 3 
the comparison of mean decoding accuracy relative to the null distribution. The dashed gray line represents chance 4 
level, while the violin plot illustrates the null distribution generated by permuting conflict labels within each 5 
participant, with 10,000 permutations randomly sampled and averaged. As explained in Section 2.2, the null 6 
distribution values are not symmetrically centered around the chance level. The dot represents the mean decoding 7 
accuracy, and the error bar indicates the confidence intervals of the mean. For panels (a–c), the average decoding 8 
accuracy corresponds to the 100th percentile, while in panel (d), it falls at the 67th percentile. The right-side panels 9 
(a–d) depict the decoding accuracy from the searchlight analysis across frequency and electrode space. In the 10 
frequency representation, decoding accuracy values were averaged across all electrodes. The limits of the 11 
topographical maps are not uniform and vary across different maps. The minimum is at 0.50 and the maximum 12 
ranges between 0.503-0.51. 13 
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Figure 4. Cross-task decoding results. Both panels display the comparison of mean decoding accuracy relative 1 
to the null distribution across different training-testing pairs. Additionally, each sub-figure contains the percentile, 2 
where the mean decoding accuracy falls relative to the null distribution. Panel (a) represents results across all 3 
frequency ranges, and panel (b) focuses on the theta frequency range (3–7 Hz). The dashed gray line represents 4 
chance level, and the violin plot illustrates the null distribution generated by permuting conflict labels within each 5 
participant, with 10,000 permutations randomly sampled and averaged. As explained in Section 2.2, the null 6 
distribution values are not symmetrically centered around the chance level. The dot represents the mean decoding 7 
accuracy, and the error bar indicates the 95% confidence intervals of the mean. 8 

To further test the robustness of these findings, we employed a third approach: a leave-one-9 

task-out decoding procedure. In this method, a linear model was trained on all tasks except one, 10 

which was then used as the testing set. This approach was chosen to construct a more robust 11 

model, potentially better suited to detect a task-general conflict processing signal. The 12 

statistical procedure was identical to that used in the within-task analyses described in Section 13 

2.2. Specifically, we constructed a null distribution and identified the percentile at which the 14 

average decoding accuracy was located. If this percentile fell below the 95th, we interpreted it 15 

as support for the null hypothesis. Conversely, percentiles above the 95th were taken as 16 

evidence of significantly above-chance decoding performance. The results corroborated the 17 

earlier findings: cross-task decoding accuracy remained at chance level, providing strong 18 

evidence for the null hypothesis. Specifically, the average decoding accuracy was positioned 19 

at the 86.97th percentile of the null distribution.  20 

 21 

In summary, these results demonstrate that the conflict signal identified in the within-task 22 

decoding procedure does not generalize across tasks. This conclusion was robust, as it was 23 

supported by three distinct decoding approaches. We interpret these findings as evidence for 24 

our second hypothesis, which posits that, at the neural level, conflict processing and control 25 

are supported by multiple conflict-specific modules.  26 

 27 

3. Discussion 28 

 29 

The primary aim of the current study was to investigate whether conflict processing is governed 30 

by (i) a domain-general neural mechanism; (ii) multiple conflict-specific modules; or (iii) it is 31 

best explained by a hybrid model. To explore this, we examined whether a linear classifier 32 

could distinguish conflict from non-conflict trials based on EEG data across three distinct 33 

conflict tasks. Analyses were performed both within each task as well as across tasks. A key 34 

strength of the latter approach lies in its ability to bypass assumptions about specific neural 35 

components or regions shared across tasks (Grootswagers et al., 2017; Hebart & Baker, 2018). 36 

Instead, the method leverages the classifier's capacity to detect regularities in the data that 37 

might reflect task-independent conflict processing. By focusing on data-driven patterns, this 38 

study offers a novel approach to probing the generalizability of conflict signals, contrasting 39 

with prior research that often relies on predefined neural markers or brain regions of interest. 40 

Another distinctive aspect of this work is the dataset used for these analyses. Unlike most prior 41 

studies, which often rely on smaller or less diverse samples, this study drew on a large, 42 

representative sample of 507 individuals aged from 20 to 70 years. This large and 43 

representative sample enhances the generalizability of our findings, providing insights into 44 

conflict processing across a wide cross-section of the population. The size and diversity of this 45 

dataset mark a significant methodological advance for robust and reproducible investigations 46 

of conflict processing and control and its neural correlates. 47 

 48 

Our findings revealed that the classifier reliably distinguished conflict from non-conflict trials 49 

across all tasks, except for the Stroop Reading task. These results align with prior research 50 
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highlighting distinct neural signatures of conflict processing and control. Specifically, the 1 

fronto-central N2 component has been consistently linked to conflict monitoring in Simon, 2 

Stroop, and change detection tasks (Gajewski & Falkenstein, 2015; Heidlmayr et al., 2020; 3 

Wascher & Beste, 2010). The parietal P3 component is another EEG correlate, whose 4 

modulation has been frequently shown in conflict tasks (Ila & Polich, 1999; Leuthold, 2011; 5 

Polich, 2007). Additionally, theta-band oscillatory activity (~3–7 Hz) has also been strongly 6 

associated with conflict resolution, particularly in Stroop and Simon tasks (Hanslmayr et al., 7 

2008; Nigbur et al., 2011). Consistent with these findings, our searchlight analysis found that 8 

within-task decoding accuracy peaked at 3 Hz and extended across the theta range. Finally, the 9 

weaker conflict signal in the Stroop Reading task is in line with previous findings suggesting 10 

lower levels of conflict compared to the color-naming variant (Van Maanen et al., 2009). 11 

Together, these results provide robust evidence that conflict processing can be neurally tracked 12 

within each task, with components such as the N2, P3, and theta oscillations likely underlying 13 

the successful decoding.  14 

 15 

Despite evidence for successful within-task decoding, our cross-task decoding analyses 16 

revealed that conflict signals do not generalize across tasks. Notably, this finding was robust 17 

and consistently observed across three different cross-task procedures. This supports the 18 

perspective of multiple conflict-specific modules and suggests that the neural mechanisms 19 

underlying conflict processing are not domain-general but are orchestrated by neural sub-20 

modules tailored to handle task-specific conflict resolution strategies. Our results also exclude 21 

the possibility of a hybrid model, as we did not find evidence for above-chance decoding 22 

accuracy between the change detection and any other task. Our results align with frameworks 23 

suggesting that conflict processing and control operate across various levels of the brain's 24 

processing hierarchy (Egner, 2008). Specifically, the level at which conflict processing occurs 25 

depends on the nature of the information involved. For example, resolving a conflict between 26 

visual features engages the visual cortex, whereas resolving a motor or semantic conflict 27 

involves higher-level brain regions. Additionally, it is plausible that conflict processing at 28 

different cortical levels also follows a distinct temporal profile. For example, conflict between 29 

low-level visual features may be detected and processed earlier than conflict between 30 

perceptual and semantic information. This suggests that the conflict signal in different tasks is 31 

not only linked to activations in distinct brain regions but also follows different temporal 32 

dynamics. Overall, this suggests that the brain flexibly adjusts its conflict resolution strategies 33 

according to the task demands, utilizing specialized neural resources to resolve different 34 

conflict types. 35 

 36 

Our results are also in line with a broader framework, according to which conflict processing 37 

emerges from interactions within a widespread network of brain regions that vary in both 38 

location and function (Zink et al., 2021). This perspective acknowledges the role of the anterior 39 

cingulate cortex and prefrontal cortex as part of this network but does not assign them exclusive 40 

responsibility for conflict processing and control. Crucially, the emphasis of the model is on 41 

the role of connectivity patterns within the network. While different types of conflict may 42 

activate overlapping brain regions, their specific functions are shaped by unique connectivity 43 

patterns (Zink et al., 2021). These differences in connectivity could explain the observed lack 44 

of cross-task decoding, as each task may rely on unique patterns of interaction within the 45 

network to resolve conflict (Zink et al., 2021).  46 

 47 

While our results point to the dynamic interactions within a distributed network of brain regions 48 

involved in conflict processing, they also raise important questions about the concept of 49 

domain-general conflict processing and control. If conflict resolution depends on specialized 50 
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connectivity patterns that vary depending on the task, the idea of a unified, task-independent 1 

network with consistent properties becomes increasingly difficult to support. This debate is 2 

already prominent among researchers studying the psychometric properties of cognitive 3 

control, with evidence suggesting the absence of a latent factor for domain-general control 4 

(Oberauer, 2024; Von Bastian et al., 2020). Our findings contribute to this debate by providing 5 

neural evidence that conflict processing and cognitive control are not governed by a single, 6 

domain-general network but are instead driven by specialized connectivity patterns unique to 7 

each task. 8 

To summarize, we investigated whether the neural mechanisms underlying conflict processing 9 

are domain-general, conflict-specific, or driven by a hybrid architecture involving both 10 

domain-general and domain-specific modules. We analyzed EEG data from 507 participants 11 

who completed three conflict tasks: a change detection task, the Simon task, and the Stroop 12 

task. Our results showed that while conflict signals could be reliably tracked within each task, 13 

they did not generalize across tasks, as evidenced by chance-level cross-task decoding results. 14 

These findings support the notion of multiple conflict-specific modules orchestrating conflict 15 

processing and control in the brain, consistent with our second prediction. Overall, these results 16 

contribute to ongoing debates about cognitive control by suggesting that conflict processing 17 

and control relies on specialized neural systems tailored to task-specific demands. 18 

4. Methods 19 

 20 

4.1. Participants  21 

The present study utilized data collected within the ongoing Dortmund Vital Study 22 

(Clinicaltrials.gov NCT05155397; see Gajewski et al., 2022). At the time the current analyses 23 

were conducted, data had been collected from 614 participants. The exclusion criteria of the 24 

Dortmund Vital Study included no history of significant medical conditions, including (i) 25 

neurological disorders (e.g., dementia, Parkinson’s disease, or stroke); (ii) cardiovascular 26 

diseases; (iii) bleeding disorders; (iv) cancer; (v) psychiatric conditions (e.g., schizophrenia, 27 

obsessive-compulsive disorder, anxiety disorders, or severe depression); (vi) eye conditions 28 

such as cataracts, glaucoma, or blindness. Additionally, participants with a history of head 29 

injuries, surgeries, implants and those with a reduced physical fitness or mobility were 30 

excluded. Finally, participants taking psychotropic drugs or neuroleptics were omitted from the 31 

study. However, individuals taking medications such as blood thinners, hormones, 32 

antihypertensives, or cholesterol-lowering drugs were eligible for inclusion. All participants 33 

had normal or corrected-to-normal vision and hearing. 34 

 35 

Originally, data were collected from 614 participants, but 107 participants were excluded for 36 

various reasons; Sixty participants did not attend the second experimental session required to 37 

complete the Stroop task. Twenty-one participants had excessively noisy EEG recordings for 38 

at least one task, rendering their data unusable. Eleven participants failed the Ishihara color 39 

test, and three had vision impairments. One participant could not complete testing due to health 40 

issues, and five were excluded for not being able to complete the tasks. Additionally, two 41 

participants were excluded due to technical issues encountered during their experimental 42 

sessions. Finally, the data from four participants were excluded because they missed too many 43 

trials during the Simon task, rendering their EEG data unsuitable for the decoding analyses. 44 

The final sample included 507 participants (320 females, 187 males, age range: 20-70 years, 45 

Mage = 43.58, SDage = 14.09). 46 
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All participants provided written informed consent prior to participation, and the study adhered 1 

to the ethical principles outlined in the Declaration of Helsinki. Ethical approval was obtained 2 

from the local ethics committee of the Leibniz Research Centre for Working Environment and 3 

Human Factors, Dortmund, Germany (approval number: A93). The four tasks included in the 4 

current study were completed in two different experimental sessions that spanned two days.  5 

Participants were compensated with 160 Euros for these two sessions.  6 

 7 

4.2. Experimental procedure   8 

Participants completed computer-based cognitive tasks, including a change detection task 9 

(Wascher & Beste, 2010), a Simon task (Simon, 1969), and a Stroop task (Stroop, 1935). The 10 

change detection and Simon tasks were administered on the first day, whereas the Stroop task 11 

was conducted in a separate session on a different day. EEG signals were recorded throughout 12 

the completion of these tasks. 13 

 14 

4.2.1. Technical set-up – first session 15 

Tasks were displayed on a 32-inch VSG monitor (Display++ LCD, M0250 & M0251) with a 16 

resolution of 1920×1080 pixels and a refresh rate of 100 Hz. Manual responses were captured 17 

using force-sensitive handles. The stimuli and presentation sequence were created using the 18 

FreePascal software. EEG data were collected using an Ag–AgCI active electrode EEG system 19 

(actiCap; Brain Products GmbH). The signal was sampled at a rate of 1000 Hz and filtered in 20 

real time with a 200 Hz low-pass filter. A 64-channel cap was used for data acquisition, with 21 

the FCz electrode serving as the reference electrode and Afz as the ground electrode.  22 

 23 

4.2.2. Technical set-up – second session 24 

On the second day, participants performed the tasks on a 17-inch monitor (refresh rate: 100 Hz, 25 

resolution: 640 × 480 pixels) and were seated ~70 cm away from the screen. For recording the 26 

EEG data, a 32-channel EEG system equipped with Ag–AgCl active electrodes (BioSemi B.V.) 27 

was utilized, with data sampled online at 2048 Hz. The BioSemi system incorporates a 28 

Common Mode Sense (CMS) active electrode and a Driven Right Leg (DRL) passive 29 

electrode, which together establish a feedback loop to regulate the subject's average potential. 30 

The reference and ground electrodes are included within this CMS and DRL loop. Electrode 31 

placement followed the international 10–20 system, with impedances maintained below 10 kΩ 32 

during both experimental sessions.  33 

 34 

4.2.3. Change detection task   35 

Participants were shown a display (luminosity: 20cd/m2) with two bars (size: 1.35°×0.56° 36 

visual angle; color: CIE1931: 0.287, 0.312, 10-50 cd/m2, where the last parameter has been 37 

varied between 10-50). One of the bars was always on the left, while the other on the right of 38 

a central fixation dot (size: 0.3°×0.3°; distance between fixation dot and bar: 1.3° visual angle). 39 

After 50 milliseconds, a second display appeared introducing either a luminance change, an 40 

orientation change, or both. Luminance changes occurred either from 10 to 50 cd/m2 or from 41 

50 to 10 cd/m2. Similarly, orientation changes could switch from horizontal to vertical or from 42 

vertical to horizontal (Wascher & Beste, 2010). Participants’ task was to indicate, via a left- or 43 

right-hand button press, whether the luminance change occurred on the left or right side. 44 

Importantly, the luminance and orientation changes could appear either together or separately. 45 

Trials were categorized as: (i) non-conflict trials, where only a luminance change occurred, or 46 

a luminance change occurred along with an orientation change in the same bar; (ii) conflict 47 

trials, in which the luminance change occurred in one bar while the orientation change occurred 48 

in the other bar.  49 
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4.2.4. Simon task   1 

Trials in the Simon task began with a central fixation cross (size: 0.3°×0.3°) and two 2 

placeholder dots (size: 0.15°×0.15°), one on each side of the fixation displayed for a variable 3 

interval between 500 and 800 milliseconds (background color: CIE1931: 0.287, 0.312, 10). 4 

Following this, participants were shown a stimulus display consisting of two shapes on either 5 

side of the fixation cross (distance between shape and central fixation: 2° visual angle). 6 

Participants were instructed to press a button when circles appeared and to withhold their 7 

response when a diamond was present. For the current study, we only consider trials, in which 8 

a response had to be made. Within the circles (diameter in visual angles: 1.1°), letters could be 9 

displayed, always appearing on one side of the fixation cross, while the other shape contained 10 

three horizontal lines (size of each line: 0.45°×0.07° visual angle) as a placeholder (color: 11 

CIE1931: 0.287, 0.312, 80). If participants saw the letter “H” (size: 0.536°×0.474° visual angle) 12 

they were supposed to respond with one hand (e.g., left), and if they saw the letter “N” (size: 13 

0.495°×0.474° visual angle) they were required to respond with the other hand (e.g., right). 14 

Importantly, trials were categorized as: (i) non-conflict trials when the letter that instructed the 15 

participant to press the button with a particular hand (e.g., left) appeared on the corresponding 16 

side (e.g., left); (ii) conflict trials when the letter instructing the participant to press with a 17 

specific hand appeared on the opposite side (e.g., the letter for the left hand was on the right 18 

side).  19 

 20 

4.2.5. Stroop task  21 

The task was divided into two main blocks. In the first block, participants’ task was to indicate 22 

the word's meaning (i.e., read the color word), while in the second block, they had to report the 23 

color of the ink, in which the word is printed. The trial started with a cue (square or diamond, 24 

size: 0.33°×3.03° visual angle) indicating whether it is a color reading or a color naming task. 25 

Following a 1000 ms inter-stimulus-interval, participants were displayed a color word (size: 26 

0.57°×0.82° visual angle). The stimuli consisted of the German words “rot,” “grün,” “gelb,” 27 

“blau” for “red,” “green,” “yellow” and “blue” each displayed in one of these four colors. The 28 

color of the presented words was either compatible or incompatible with the word’s meaning. 29 

Half of the trials were compatible (e.g., the word “red” displayed with red ink–non-conflict 30 

trials), and the other half were incompatible (e.g., the word “red” in green color – conflict 31 

trials). To respond, participants used four buttons, each of which had an assigned color that 32 

was learnt before starting the session. For responses, the index and middle fingers of both hands 33 

were used. The color-button assignment was the same for all participants. Participants had 2500 34 

milliseconds to respond. At the end of the trial, they received feedback: a plus sign for correct 35 

responses and a minus sign (size: 0.82°×0.82° visual angle) for incorrect responses. The 36 

response-cue interval was 1300 milliseconds and included the response feedback and a 37 

feedback delay. The instruction encouraged both quick and accurate responses.  38 

 39 

4.3.      Data analyses 40 

 41 

4.3.1.  EEG preprocessing 42 

Given the robustness of multivariate methods to noise (Carlson et al., 2020) minimal 43 

preprocessing was performed. Data was high-pass and low-pass filtered using a Hamming 44 

windowed sinc FIR filter and then downsampled to 250 Hz. For each task, epochs time-locked 45 

to the target stimulus were created: (i) perceptual discrimination: -500 to 2800 ms; (ii) Simon: 46 

-500 to 2500 ms; (iii) Stroop: -400 to 2000 ms. At the end, baseline removal (0–200 ms) was 47 

applied. Preprocessing was conducted using functions from the EEGLAB toolbox (v2024.0; 48 

(Delorme & Makeig, 2004) implemented in MATLAB.  49 
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4.3.2. Decoding analyses & statistics 1 

To address the main research question, multivariate decoding analyses were performed using 2 

the CoSMoMVPA toolbox (Oosterhof et al., 2016) implemented in MATLAB. For all 3 

analyses, the classifier was trained and tested to distinguish between conflict and non-conflict 4 

trials. Therefore, the chance level was always set to 0.5 (i.e., 50%). Regularized linear 5 

discriminant analysis classifiers were employed. To ensure consistency and comparability of 6 

results, each dataset was standardized to include a common set of electrodes across all 7 

participants and sessions. Trials where participants failed to respond within the time limit were 8 

excluded. 9 

 10 

4.3.2.1. Within-task decoding – time domain analysis 11 

As the first step in the analysis, we performed within-task decoding, where the classifier was 12 

both trained and tested using trials from the same task. We employed a 10-fold cross-validation 13 

approach, training the classifier on 90% of the data and testing it on the remaining 10%. This 14 

process was repeated across all folds, ensuring each data segment served as the test set once. 15 

To maintain class-balance, the cosmo_balance_partitions function was used to ensure equal 16 

representation of conflict and non-conflict trials in both the training and testing sets. The 17 

classifier was trained and tested independently at each time point, providing precise temporal 18 

resolution of decoding accuracy (Grootswagers et al., 2017). For each time point, decoding 19 

performance was calculated as the proportion of correctly classified trials, reflecting the 20 

classifier’s ability to differentiate between conflict and non-conflict conditions. We also 21 

performed a searchlight analysis. Here, we used electrode values as features, so the analysis 22 

was performed individually for each electrode and timepoint, yielding topographical maps at 23 

the following key timepoints: 252, 500, 752, 1000, 1500 ms. Statistical analyses were 24 

conducted using the cosmo_montecarlo_cluster_stat, which incorporates Threshold-Free 25 

Cluster Enhancement (Smith & Nichols, 2009) and Monte Carlo-based permutation testing 26 

(Maris & Oostenveld, 2007) to account for multiple comparisons (Oosterhof et al., 2016). 27 

4.3.2.2. Within-task decoding – frequency-domain analysis 28 

In a second step, we implemented an alternative within-task decoding analysis, which uses 29 

power values from different frequencies as a feature alongside electrodes. We implemented 30 

this second within-task decoding procedure to determine whether power values from specific 31 

frequency ranges significantly contribute to decoding accuracy (Hanslmayr et al., 2008; Nigbur 32 

et al., 2011). This approach excludes the temporal dimension by applying a fast Fourier 33 

transform to the 0–1000 ms window following stimulus presentation, converting raw EEG 34 

signals into power at each frequency value. Power values within the 1–50 Hz range were 35 

extracted and used as features in the decoding analysis alongside electrode data, resulting in a 36 

single decoding accuracy value per participant. As in the previous decoding analysis, we 37 

employed a 10-fold cross-validation procedure, ensuring equal representation of conflict and 38 

non-conflict trials in both training and testing sets. Before running the decoding procedure, 39 

values underwent z-transformation. Finally, classifier performance was quantified as the 40 

proportion of correctly classified trials. For the searchlight analysis, we followed the same 41 

procedure, with one key difference: instead of using electrodes and frequency values as 42 

features, the analysis was conducted separately for each electrode and frequency combination. 43 

First, we plotted the average decoding accuracy across all electrodes for the frequency range 44 

1-50 Hz. Additionally, topographies are also shown for a set of key frequencies: 3, 5, 7, 10, 15, 45 

20, 25, 30 Hz.   46 

To evaluate the statistical reliability of the results, we generated a null distribution for each 47 

task. Conflict and non-conflict labels were randomly permuted 100 times per participant, 48 
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generating 100 decoding accuracy values per participant. From these, one decoding accuracy 1 

value per participant was randomly selected, and the mean decoding accuracy across 2 

participants was calculated (Stelzer et al., 2013). This process was repeated 10,000 times to 3 

construct the null distribution. Finally, we compared the observed mean decoding accuracy to 4 

this null distribution, determining the percentile at which it fell. A percentile value falling 5 

below the 95th percentile is interpreted as evidence for the null hypothesis, while values above 6 

95 represent evidence for significant above-chance decoding.  7 

 8 

4.3.2.3. Cross-task decoding – frequency-domain analysis 9 

The cross-task decoding procedure was designed to examine whether neural patterns associated 10 

with conflict and non-conflict trials could generalize across different cognitive tasks. Notably, 11 

the Stroop reading task was excluded from this set of analyses due to its lack of robust evidence 12 

for within-task decoding. The cross-task decoding procedure was modeled after the steps used 13 

in the within-task decoding analysis applied to the frequency domain. Specifically, we applied 14 

a Fast Fourier Transform to the 0–1000 ms window following the stimulus presentation and 15 

extracted power values within the 1–50 Hz range, which were used as input for classification. 16 

Data averaging was performed to enhance the signal-to-noise ratio and ensure a sufficient 17 

number of super-trials for robust modeling, generating 200 super-trials from the training set 18 

and 200 from the testing set, with conflict and non-conflict trials equally represented. Three 19 

different approaches were employed in this analysis: (i) Pairwise cross-task decoding (1–50 20 

Hz): All tasks were used as both training and testing datasets, with power values between 1–21 

50 Hz included. (ii) Pairwise cross-task decoding (4–7 Hz): All tasks were used as both training 22 

and testing datasets, but only power values within the 4–7 Hz range were included. (iii) Leave-23 

one-out model: Training was conducted using three out of four tasks, with testing performed 24 

on the remaining task. Importantly, the leave-one-task-out procedure chosen to construct a 25 

more robust model, was potentially better suited to detect a task-general conflict processing 26 

signal. The procedure was comparable to pair-wise cross-task decoding, with trials from the 27 

training tasks stacked together and trials from the test task evaluated independently. The same 28 

statistical procedure described in Section 4.3.2.2 was applied to this analysis. 29 
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