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Abstract 

Multivariate pattern analysis (MVPA) is a popular technique that can distinguish between 

condition-specific patterns of activation. Applied to neuroimaging data, MVPA decoding for 

inference uses above chance decoding to identify statistically reliable condition-specific 

information in neuroimaging data which may be missed by univariate methods. However, 

several analysis choices influence decoding success, and the combined effects of these choices 

have not been fully evaluated. We systematically assessed the influence of trial averaging and 

resampling on decoding accuracy and subsequent statistical outcome on simulated data. 

Although the optimal parameters varied with the classifier and cross-validation approach used, 

we found that modest trial averaging using roughly 5-10% of the total number of trials per 

condition improved accuracy and associated t-statistics. In addition, a resampling value of 2 

could improve t-statistics and classification performance, but was not always necessary. We 

provide code to allow researchers to optimise analyses for the parameters of their data.  
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Introduction 

The last decade has seen an explosion in the popularity of multivariate pattern analysis 

(MVPA) for neuroimaging data. By identifying condition-specific patterns of activation, 

MVPA can reveal the evolution of information processing over time and/or space and is 

sensitive to information missed by univariate methods (e.g., Grootswagers, 2017; Pereira et al., 

2009; Haynes & Rees, 2006). Typically, cognitive neuroscience experiments employ MVPA 

techniques, such as linear classification (‘decoding’), to make inferences about the type of 

information decodable from neuroimaging data, and to characterise these ‘neural 

representations’ in terms of when and where they can be decoded, whether they generalise 

between conditions, and if they change with experimental manipulations. Decoding for 

inference typically compares decoding metrics (e.g., classification accuracy) between 

conditions or to chance, drawing inference about neural processing from statistically reliable 

condition-specific information in neuroimaging data. This differs from decoding for prediction 

which aims to maximise classification performance (Hebart & Baker, 2018).  

There are many ways to run a decoding for inference analysis, and multiple decisions are 

likely to influence decoding success. One analysis option is the creation of ‘pseudotrials’, or 

‘supertrials’, by averaging data from subsets of trials together before performing MVPA. 

Previous results demonstrate that pseudotrial averaging can lead to an increase in classification 

accuracy, compared to single-trial decoding (e.g., Adam et al., 2020; Tuckute et al., 2019; 

Hebart et al., 2018; Grootswagers et al., 2017; Isik et al., 2014). However, too much averaging 

can be detrimental, as increasing the number of trials per pseudotrial can also increase the 

between-subject variance, which in turn affects the statistical outcome. A second decision is 

the cross-validation procedure used to evaluate the generalisation of classification across 

subsets of the data (Bishop & Nasrabadi, 2006). In a leave-one-trial-out procedure, the number 

of cross-validation steps is equal to the number of trials available per exemplar. At each step, 

the classifier is trained on all but one of the trials, which is then used to test the classification. 

A leave-one-pseudotrial-out method uses the same logic, but is based on averaged subsets of 

the original trials. Another option is to divide the data into larger chunks or blocks across which 

to train and test the classifier. For example, in a study with 90 trials per exemplar, 10-fold 

cross-validation would split the data into 9 sets of 10 trials to use iteratively for training and 

testing. This means that at each iteration, the classifier is trained on fewer data points than for 

leave-one-trial-out, but previous work has shown that this may provide more stable estimates 

with lower variance across decoding accuracies (Varoquaux et al., 2017). When combined with 

trial averaging, pseudotrials can be created either by averaging all of the trials within a chunk 

or by grouping them into smaller subsets of trials. Therefore, at least two interacting parameters 

seem likely to affect results: the number of trials averaged together before classification, and 

the number of folds into which the data are split for cross-validation.  

Thus far the choice of these parameters has been largely arbitrary, resulting in a wide 

variety of trial averaging and cross-validation approaches in the literature. To name a few 

examples, in Bae and Luck (2018) and Foster et al. (2017), the available trials per condition 

were randomly divided into 3 chunks before being averaged and decoded using a 3-fold cross-

validation. In Isik et al. (2014), groups of 10 trials were averaged before using a 5-fold cross-

validation, and in Duncan et al. (2023), groups of 3 trials were averaged before using a 10-fold 

cross-validation. Goddard et al. (2022) averaged over 16 trials, before using an 8-fold cross-

validation, and Petit et al. (2023) used the median of 5 trials and a leave-one-pseudotrial-out 
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cross-validation with 22 folds. Given the variation across experiments, it can be difficult to 

make decoding analysis decisions regarding a new set of data.  

In an evaluation of different decoding approaches, Grootswagers et al. (2017) compared 

decoding accuracies when averaging together 4, 8, 16, and 32 trials (equivalent to creating 8, 

4, 2, and 1 pseudotrials) from an experiment of 32 trials per condition. A leave-one-pseudotrial-

out cross-validation scheme was used, meaning that the number of cross-validation steps was 

determined by the number of pseudotrials. All averaging procedures increased decoding 

accuracies compared to no trial averaging, but the least amount of averaging (4 trials, 12.5%) 

provided the best trade-off between signal-to-noise and number of pseudotrials. In addition, 

they found similar decoding accuracies for 10-fold and leave-one-trial-out cross-validation 

methods. They reported lower decoding accuracies using a 2-fold cross-validation procedure, 

though others have argued that this approach may be associated with higher statistical power 

overall (Valente et al., 2021). In a different implementation, Adam et al. (2020) compared trial 

averaging results using a 3-fold classification that was independent from the number of 

pseudotrials created. They averaged groups of trials within each fold, ranging from 5 to 25, and 

found a significant increase in the average decoding accuracy with more averaging. However, 

increasing the number of trials per pseudotrial also increased the between-subject variance, and 

they concluded that the average of 10 trials was optimal given the number of trials available.  

Thus, while there is clearly a trade-off between providing a classifier with fewer less noisy 

trials (more averaging) or more noisy trials (less averaging), it is not yet clear how to optimise 

this decision. In particular, it unclear whether and how the optimal amount of averaging 

depends on other factors such as number of trials, choice of classifier, effect size, etc.  

The aim of the current work was to inform future decoding studies by systematically 

assessing the influence of a range of parameters on decoding accuracy and subsequent 

statistical outcome, using data simulated in CosMoMVPA (Oosterhof, 2016). We varied 

several parameters across simulations, including the number of trials per pseudotrial, cross-

validation procedure, number of trials per condition and the size of the underlying effect, and 

assessed the data for three different linear classifiers. In all cases, we repeated the averaging 

procedure multiple times per ‘subject’ to prevent the results relying on one specific division of 

the trials (Goddard et al., 2022). Decoding results varied with the classifier used, the cross-

validation approach, and the number of the trials averaged to create each pseudotrial. In 

addition, we evaluated the influence of random sampling with replacement (‘resampling’) on 

decoding accuracy, which has not yet been comprehensively assessed. We hypothesised that 

this would be beneficial when creating pseudotrials as it increases the number of samples 

available for classification, which would normally be diminished by trial averaging. Although 

the optimal parameters varied with classifier and cross-validation approach, we found that 

using roughly 5-10% of the total number of trials per condition was optimal for creating 

pseudotrials. In addition, a resampling value of 2 could improve t-statistics and reduce the 

impact of the number of trials per pseudotrial on classification performance. 

 

Methods  

We used CoSMoMVPA (Oosterhof et al., 2016) to simulate multiple datasets, each 

with two experimental conditions, and examined the influence of a) the number of trials used 

per pseudotrial, b) the number of times each trial was resampled, c) the simulated class distance, 
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and d) the choice of classifier. We chose three popular classifiers that are implemented in 

CoSMoMVPA: linear support vector machine (libSVM), linear discriminant analysis (LDA), 

and Gaussian Naïve Bayes. For experiment 1, we simulated data with 700 features (reflecting 

channels/voxels) from 100 ‘subjects’ with 2 conditions and 90 trials per condition. To check 

whether the results were dependent on the specific number of trials per condition, we also 

simulated a second experiment with only 45 trials per condition. We also manipulated the 

multivariate class distance using built-in CoSMoMVPA functions: individual values were 

drawn from a normal distribution (sd=1) with the amount of separation between class-means 

for each feature defined as class-mean = class_distance/sqrt(log(700*ntrials)) with ntrials 

either 90 or 45 (for the 2 experiments), and used 3 values for class_distance (0, 0.1, and 0.2). 

Results for a smaller number of participants (50) and fewer features (6) can be found in the 

supplementary material. Simulation scripts are available on the Open Science Framework, 

https://osf.io/hjf75/.  

We ran both a ‘chunking’ procedure and a ‘leave-one-pseudotrial-out’ procedure as 

both approaches are commonly used. For the ‘chunking’ procedure, pseudotrials were created 

separately within 3 ‘blocks’ of trials, and a 3-fold cross-validation method was always used 

(additional results for a 10-fold cross-validation procedure can be found in the supplementary 

material). For the ‘leave-one-pseudotrial-out’ method, the number of cross-validation steps was 

determined by the number of trials per pseudotrial (the more trial averaging and resampling, 

the fewer possible steps). In experiment 1 (90 trials/condition), for both methods we used 

between 1 and 30 of the available trials per pseudotrial, and resampled each trial between 1 and 

15 times. In Experiment 2 (45 trials/condition), we used between 1 and 15 of the available trials 

per pseudotrial, and resampled each trial between 1 and 10 times. Any trials that could not be 

used in a pseudotrial were left out of the classification. To ensure that the results were not 

dependent on the specific division of trails into pseudotrials, for each ‘subject’ and parameter 

set, we ran 100 iterations of the pseudotrial procedure and averaged the 100 resulting 

classification accuracies to give a single value for that subject and parameter set. Additional 

results across different numbers of iterations can be found in the supplementary material. For 

all simulations, we report the average decoding accuracy across subjects, the standard 

deviation, and their ratio (t-score against chance level decoding, 50%).  

 

Results 

Influence of trial averaging 

In keeping with previous research, we show that averaging even a few trials together 

can be beneficial for classification performance. Importantly, for the dataset with no simulated 

difference between conditions (Figure 1, top panel) average decoding accuracy remained at 

50% with the creation of pseudotrials. This reassures us that averaging the data cannot create 

effects where they are not present. For the data with simulated class distances greater than zero, 

we observed a complex pattern of results that varied with the number of trials per pseudotrial, 

classifier type, and class distance. Creating averages of even a few trials was helpful in most 

cases, resulting in increased decoding accuracy and higher t-statistics, despite the concurrent 

increase in standard deviation over subjects. However, including too many of the available 

trials in an average (reducing the number of datapoints available to the classifier) could be 

detrimental, as the increase in standard deviation outstripped the increase in average decoding, 
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resulting in reduced t-values. Using more than half of the available trials per pseudotrial was 

particularly detrimental for the Naïve Bayes classifier, which benefited from less averaging 

and more samples for the classifier. This was also the case for the SVM classifier, but to a 

lesser extent, and most visible when the class distance was the greatest.  

 

 

 

Figure 1. The influence of trial averaging, class distance, and classifier type on decoding accuracy and 

t-statistics. Rows correspond to the three simulated class distances 0, 0.1, and 0.2. In the left-hand 

column we plot example random normal distributions (randn) with added constants to illustrate the 

simulated class distances. This highlights that a class distance of 0.2 had the largest difference between 

the distribution means. Other columns correspond to results from the three classifiers tested (SVM = 

support vector machine, LDA = linear discriminant analysis, NB = Naïve Bayes). We simulated data 

from 100 subjects with 90 trials per condition. Pseudotrials were created separately within 3 ‘blocks’ 

of trials, facilitating a 3-fold cross-validation approach, with trials randomly allocated to pseudotrials 

across 100 iterations of pseudotrial creation for each subject. Each datapoint represents the average 

value for one subject.  
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Influence of trial resampling 

Next, we examined the influence of trial resampling and its interaction with the number 

of trials per pseudotrial. Once again, with no simulated class differences, decoding remained 

at 50%, reassuring us that averaging and resampling the data cannot create effects where there 

are none (supplementary Figure 1a). For the data with a small simulated difference between 

conditions (distance = 0.1, Figure 2), we found that using around a third of the original trials 

per chunk to create each pseudotrial was sufficient to aid decoding (i.e., 10 of the 30 trials per 

chunk, or 11% of the total 90 trials). Combining this with a small amount of resampling further 

increased decoding accuracy, presumably because resampling allows more pseudotrials to be 

created. For example, with 30 trials per condition in each of the 3 chunks, averaging together 

10 trials creates 3 pseudotrials per chunk if no resampling is used. With a resampling value of 

2, each trial is included in 2 pseudotrials, meaning that 6 pseudotrials are created per chunk. 

While a resampling of 2 increased t-values for the Naïve Bayes classifier, this was not the case 

for SVM and LDA, where resampling mostly acted to stabilise the influence of the number of 

trials per pseudotrial. The results for a class distance of 0.2 were similar and can be found in 

supplementary Figure 1b. 

 

Figure 2. The influence of both averaging and resampling, on decoding accuracy, standard deviation, 

and t-statistics. Rows correspond to results from the three classifiers tested (SVM = support vector 
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machine, LDA = linear discriminant analysis, NB = Naïve Bayes). Pseudotrials were created separately 

within 3 allocated ‘blocks’ of trials, facilitating a 3-fold cross-validation approach, with trials randomly 

allocated across 100 iterations of pseudotrial creation. For the results plotted here, we simulated data 

from 100 subjects with 90 trials per condition and a class distance of 0.1 (see supplementary Figures 1a 

and 1b for class distances of 0 and 0.2).  

 

Influence of fewer trials per condition 

Next, we checked whether the same principles would apply to an experiment with fewer 

trials per condition. Figure 3 demonstrates the effect of trial resampling on a smaller dataset 

with only 45 trials per condition, meaning 15 trials in each of the 3 chunks. Once again, a small 

amount of resampling combined trial averaging aided the classification particularly for the 

Naïve Bayes classifier. High values on either parameter was detrimental for classifier 

performance, and using up to a third of the original trials per chunk (i.e., 5 trials or less) per 

pseudotrial with a resampling of 2 was optimal. 

 

Figure 3. The influence of both averaging and resampling with fewer trials per condition. Rows 

correspond to results from the three classifiers tested (SVM = support vector machine, LDA = linear 

discriminant analysis, NB = Naïve Bayes). Pseudotrials were created separately within 3 allocated 

‘blocks’ of trials, facilitating a 3-fold cross-validation approach, with trials randomly allocated across 

100 iterations of pseudotrial creation. For the results plotted here, we simulated data from 100 subjects 
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with 45 trials per condition and a class distance of 0.1 (see supplementary Figure 2 for a class distance 

of 0.2).  

 

Influence of a ‘one-pseudotrial-out’ decoding approach 

The decoding analysis presented in Figures 1-3 utilised a chunking cross-validation 

procedure, in which trials were randomly allocated to one of three blocks before pseudotrials 

were created. Every analysis used a 3-fold cross validation, and only the number of trials 

available per block varied across averaging and resampling values. Next, we examined the 

alternative ‘one-pseudotrial-out’ procedure, where the number of folds was determined by the 

number of pseudotrials created. As shown in Figure 4, the maximum decoding accuracy and t-

values achieved using the ‘one-pseudotrial-out’ method were slightly higher overall than the 

‘3-block’ procedure, but had more variation across the parameter space. Once the number of 

folds reached the minimum of 2, the influence of the parameters was reduced. Less averaging 

was necessary to aid classification in the ‘one-pseudotrial-out’ approach, and the largest t-

statistics were found across all classifiers when using roughly 5% of the total 90 trials per 

pseudotrial (i.e., 4 or 5 trials) with a resampling of 2.  

 

Figure 4. The influence of averaging and resampling using a ‘one-pseudotrial-out’ decoding approach. 

Rows correspond to results from the three classifiers tested (SVM = support vector machine, LDA = 
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linear discriminant analysis, NB = Naïve Bayes). Here the number of cross-validation steps was 

determined by the number of trials per pseudotrial (the more trial averaging and resampling, the fewer 

possible steps), with trials randomly allocated across 100 iterations of pseudotrial creation. For the 

results plotted here, we simulated data from 100 subjects with 90 trials per condition and a class distance 

of 0.1 (see supplementary Figure 3 for a class distance of 0.2).  

   

Discussion 

We examined the influence of averaging and resampling across several parameters, 

including classifier type, class distance, number of trials available per condition, and the cross-

validation procedure. When using a ‘3-chunk’ or ‘10-chunk’ approach, we found that using 

around a third of the original number of trials per chunk (or ~10% of all trials for 3-chunk, ~3% 

of all trials for 10-chunk) was sufficient to aid decoding. For the 3-chunk procedure, there was 

an additional stabilising effect provided by a low resampling value of 2. This was equivalent 

to creating 6 pseudotrials within each of the 3 chunks (18 pseudotrials in total), and was 

consistent for both experiment sizes. However, too much averaging could be detrimental, 

particularly for the Naïve Bayes classifier, and little was gained by using high resampling 

values. While increasing the number of trials used per pseudotrial generally increased decoding 

accuracy, it also increased the between-subject variance and therefore influenced the statistical 

outcome.  

For the ‘one-pseudotrial-out’ cross-validation approach, fewer trials were needed per 

pseudotrial. Using around a sixth of the original number of trials per chunk (or ~5% of all trials) 

produced the largest t-statistics across all classifiers, when combined with a low resampling 

value of 2. Higher decoding accuracies and t-statistics were achieved for some parameters 

using the ‘one-pseudotrial-out’ approach compared to the ‘3-chunk’ version, but the different 

number of decoding steps resulted in more variation across the parameter space.  

Although there were similarities across the three classifiers used, they responded 

differently across parameters, presumably due to the differences in their functions. Linear SVM 

separates classes by positioning a decision hyperplane in pattern space (Misaki et al., 2010). 

This hyperplane is chosen by maximising the distance to the patterns on either side, using the 

most informative data points that lie closest to the decision boundary (support vectors). 

Because of this, the SVM is not as influenced by changes in data points sitting away from the 

decision boundary. Therefore, SVM can perform well with limited data and will benefit most 

from having a few stable estimates near the decision boundary (Mur et al., 2009).  

In LDA, the pattern space is constructed by maximising the between-class variance 

while minimising the within-class variance. The hyperplane is positioned in the middle of the 

class means, assuming that the two classes have Gaussian distributions and equal covariance. 

Therefore, a change in any data point will shift the decision boundary and potentially influence 

the classification result. Gaussian Naïve Bayes is similar to LDA, but also assumes that there 

are no correlations between pairs of data points within the same class (zero off-diagonal 

covariance). Having a low number of data points in each class distribution may more negatively 

impact the performance of Gaussian Naïve Bayes (Misaki et al., 2010), as demonstrated here.  

Here, we focused on t-scores derived from decoding accuracy as a measure of classifier 

success, as this is the most common approach in MVPA studies. Other metrics of measuring 
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class separation have been proposed, such as cross-validated Mahalanobis distance (Walther et 

al., 2016). We believe that our results would generalise to such other measures of accuracy, as 

our results show that averaging increases separation between datapoints, evidenced by 

increased accuracy, which would similarly increase Mahalanobis distance. However, a full 

exploration of the effect of averaging on these other measures is outside the scope of the current 

paper. 

In summary, we found that modest trial averaging can improve decoding accuracy and 

associated t-statistics, and that a small amount of resampling helps to stabilise the benefit of 

doing so. However, only a low resampling value is helpful, and is not always necessary. In 

addition, the use of pseudotrials did not increase decoding accuracies when no effect was 

present. Although we provide general guidelines, the optimal parameter choice (particularly, 

the number of trials per pseudotrial) will be data and design specific, so we provide analysis 

code for others to run simulations based on their own design and hypothesised effects. We hope 

that our results and code can be used to inform future multivariate brain decoding studies. 
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Supplementary Material 

Here we present additional results for class distances that were not included in the main 

text. This includes the influence of trial resampling, fewer trials per condition, and a one-

pseudotrial-out approach. We also present additional analyses that were not addressed in the 

main text. This includes the influence of a smaller number of subjects, a smaller number of 

features, increasing the number of cross-validation steps to 10, and using different iterations of 

random trial allocation to pseudotrials. 

 

Influence of trial resampling (additional class distances of 0 and 0.2) 

 Here we examined the influence of trial resampling on decoding accuracy when there 

was no simulated class difference. This differs from main Figure 2 which displayed the results 

for a class distance of 0.1. Decoding performed on data with no simulated class differences 

remained at 50%, reassuring us that averaging and resampling the data cannot create effects 

where there is none (supplementary Figure 1a).  

 

Supplementary Figure 1a. The influence of both averaging and resampling, on decoding accuracy, 

standard deviation, and t-statistics. Rows correspond to results from the three classifiers tested (SVM = 

support vector machine, LDA = linear discriminant analysis, NB = Naïve Bayes). Pseudotrials were 
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created separately within 3 allocated ‘blocks’ of trials, facilitating a 3-fold cross-validation approach, 

with trials randomly allocated across 100 iterations of pseudotrial creation. For the results plotted here, 

we simulated data from 100 subjects with 90 trials per condition and a class distance of 0 (see main 

Figure 2 for a class distance of 0.1).  

 

For the data with a simulated difference between conditions of 0.1 (main Figure 2) we 

found that using around a third of the original trials per chunk to create each pseudotrial (i.e., 

10 trials) was sufficient to aid decoding. Combining this with a small amount of resampling 

further increased decoding accuracy. As shown in supplementary Figure 1b, this was also true 

for the data a class distance of 0.2, when using the Naïve Bayes classifier. These parameters 

also performed well for the SVM and LDA classifiers, but SVM performed equally with up to 

50% of the original trials per pseudotrial (i.e., 15 trials) and a resampling value of 2. The LDA 

classifier performed well across a large range of parameters, providing that the resampling 

value was not higher than the number of trials per pseudotrial. With the larger simulated effect, 

the classifiers appeared to be more robust to the choice of averaging and resampling 

parameters. 

 

Supplementary Figure 1b. The influence of both averaging and resampling, on decoding accuracy, 

standard deviation, and t-statistics. Rows correspond to results from the three classifiers tested (SVM = 

support vector machine, LDA = linear discriminant analysis). Pseudotrials were created separately 
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within 3 allocated ‘blocks’ of trials, facilitating a 3-fold cross-validation approach, with trials randomly 

allocated across 100 iterations of pseudotrial creation. For the results plotted here, we simulated data 

from 100 subjects with 90 trials per condition and a class distance of and 0.2 (see main Figure 2 for a 

class distance of 0.1).  

 

Influence of fewer trials per condition (additional class distance of 0.2) 

Here we examined the effect of trial resampling on a smaller dataset with only 45 trials 

per condition, meaning 15 trials in each of the 3 chunks. This differs from main Figure 3 which 

displayed the results for a class distance of 0.1. Once again, a small amount of resampling 

combined with trial averaging aided the classification. High values on either parameter was 

detrimental for classifier performance, and using up to a third of the original trials (i.e., 5 trials 

or less) per pseudotrial with a resampling of 2 was optimal for both a class distance of 0.1 

(main Figure 3), and a class distance of 0.2 (supplementary Figure 2). 

 

Supplementary Figure 2. The influence of both averaging and resampling with fewer trials per 

condition. Rows correspond to results from the three classifiers tested (SVM = support vector machine, 

LDA = linear discriminant analysis, NB = Naïve Bayes). Pseudotrials were created separately within 3 

allocated ‘blocks’ of trials, facilitating a 3-fold cross-validation approach, with trials randomly allocated 

across 100 iterations of pseudotrial creation. For the results plotted here, we simulated data from 100 
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subjects with 45 trials per condition and a class distance of 0.2 (see main Figure 3 for a class distance 

of 0.1).  

 

Influence of a ‘one-pseudotrial-out’ decoding approach (additional class distance of 0.2) 

Here we examined a ‘one-pseudotrial-out’ procedure, where the number of folds was 

determined by the number of pseudotrials created, for a higher simulated class distance. This 

differs from main Figure 4 which displayed the results for a class distance of 0.1. For the Naïve 

Bayes classifier, high t-statistics were achieved when using roughly 15% of the original trials 

per pseudotrial (i.e., 4 or 5 trials) with a resampling of 2 (supplementary Figure 3). This is 

similar to the results using a class distance of 0.1 (main Figure 4). With a class distance of 0.2, 

the SVM classifier performed well with up to a third of the original trials (i.e., 10 trials) with a 

resampling of 2. For the LDA classifier, this could increase to half of the original trials (i.e., 

15 trials) with a resampling of 2. 

 

Supplementary Figure 3. The influence of averaging and resampling using a ‘one-pseudotrial-out’ 

decoding approach. Rows correspond to results from the three classifiers tested (SVM = support vector 

machine, LDA = linear discriminant analysis, NB = Naïve Bayes). Here the number of cross-validation 

steps was determined by the number of trials per pseudotrial (the more trial averaging and resampling, 

the fewer possible steps), with trials randomly allocated across 100 iterations of pseudotrial creation. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560678doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560678
http://creativecommons.org/licenses/by/4.0/


 

For the results plotted here, we simulated data from 100 subjects with 90 trials per condition and a class 

distance of 0.2 (see main Figure 4 for a class distance of 0.1). 

 

 Influence of fewer ‘subjects’ 

 Here we examined the influence of reducing the number of simulated ‘subjects’ from 

100 to 50, which was not examined within the main text. A similar pattern is found to the data 

in supplementary Figure 1b with 100 subjects a class distance of 0.2, although the overall 

performance is reduced. For the Naïve Bayes classifier, we found that using around a third of 

the original trials per chunk to create each pseudotrial (i.e., 10 trials) was sufficient to aid 

decoding. Combining this with a low resampling value of 2 further increased decoding 

accuracy. The SVM and LDA classifiers performed well with up to 50% of the original trials 

per pseudotrial (i.e., 15 trials) and a resampling value of 2. 

 

Supplementary Figure 4. The influence of both averaging and resampling with fewer subjects. Rows 

correspond to results from the three classifiers tested (SVM = support vector machine, LDA = linear 

discriminant analysis, NB = Naïve Bayes). Pseudotrials were created separately within 3 allocated 

‘blocks’ of trials, facilitating a 3-fold cross-validation approach, with trials randomly allocated across 

100 iterations of pseudotrial creation. For the results plotted here, we simulated data from 50 subjects 

with 90 trials per condition and a class distance of 0.2.  
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Influence of a smaller number of features 

 Here we examined the influence of reducing the number of simulated features from 700 

to 6, which was not reported in the main text. The overall performance of the classifiers was 

reduced, as well as the influence of the parameters on t-statistics. However, using around a 

third of the original trials per pseudotrial and a resampling of 2 would still be a reasonable 

choice to optimise classification performance. 

 

Supplementary Figure 5. The influence of both averaging and resampling with a smaller number of 

features (data size ‘small’ = 6 features). Rows correspond to results from the three classifiers tested 

(SVM = support vector machine, LDA = linear discriminant analysis, NB = Naïve Bayes). Pseudotrials 

were created separately within 3 allocated ‘blocks’ of trials, facilitating a 3-fold cross-validation 

approach, with trials randomly allocated across 100 iterations of pseudotrial creation. For the results 

plotted here, we simulated data from 100 subjects with 90 trials per condition and a class distance of 

0.2.  
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Influence of increasing the number of cross-validation steps (10-fold)  

 Here we examined the influence of increasing the number of cross-validation steps from 

3 to 10. As we simulated 90 trials per condition, there was a maximum of 9 trials per 

pseudotrial. As in the 3-chunk version (main Figure 2), using around a third of the original 

trials per chunk to create each pseudotrial (i.e., 3 trials) was sufficient to aid decoding. 

However, even for the Naïve Bayes classifier there was little to no benefit of resampling. 

 

Supplementary Figure 6. The influence of averaging and resampling using a higher number of cross-

validation steps. Rows correspond to results from the three classifiers tested (SVM = support vector 

machine, LDA = linear discriminant analysis, NB = Naïve Bayes). Pseudotrials were created separately 

within 10 allocated ‘blocks’ of 9 trials each, facilitating a 10-fold cross-validation approach, with trials 

randomly allocated across 100 iterations of pseudotrial creation. For the results plotted here, we 

simulated data from 100 subjects with 90 trials per condition and a class distance of 0.1 

 

Influence of fewer iterations of random trial allocation 

For the results reported in the main text, we ran 100 iterations of the pseudotrial 

procedure and averaged the 100 resulting classification accuracies. This was to ensure that the 

results were not dependent on the specific division of trails into pseudotrials, for each ‘subject’ 
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and parameter set. Supplementary Figure 7 demonstrates the pattern of results achieved with 

one, five, and 50 iterations or random trial allocation. Without this iteration procedure, trial 

averaging quickly increases the between-subject variance, which is particularly detrimental for 

the performance of the Naïve Bayes classifier.  

 

 

Supplementary Figure 7.  The influence of fewer iterations of random trial allocation. Rows 

correspond to the number of iterations of random trial allocation that was used to create pseudotrials. 
Columns correspond to results from the three classifiers tested (SVM = support vector machine, LDA 

= linear discriminant analysis, NB = Naïve Bayes). Pseudotrials were created separately within 3 

allocated ‘blocks’ of trials, facilitating a 3-fold cross-validation approach, with trials randomly 

allocated. For the results plotted here, we simulated data from 100 subjects with 90 trials per condition 

and a class distance of and 0.1. 
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