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The ability to perceive moving objects is crucial for threat identification and survival. Recent neuroimaging evi- 

dence has shown that goal-directed movement is an important element of object processing in the brain. However, 

prior work has primarily used moving stimuli that are also animate, making it difficult to disentangle the effect 

of movement from aliveness or animacy in representational categorisation. In the current study, we investigated 

the relationship between how the brain processes movement and aliveness by including stimuli that are alive but 

still (e.g., plants), and stimuli that are not alive but move (e.g., waves). We examined electroencephalographic 

(EEG) data recorded while participants viewed static images of moving or non-moving objects that were either 

natural or artificial. Participants classified the images according to aliveness, or according to capacity for move- 

ment. Movement explained significant variance in the neural data over and above that of aliveness, showing that 

capacity for movement is an important dimension in the representation of visual objects in humans. 
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. Introduction 

The ability to categorise objects is crucial for efficiently interacting

ith our environment and vital for survival. Knowing that objects in

he same category share properties promotes efficient decision-making,

uch as aiding in deciding which animals to approach and which to

ee, or determining which plants are edible and which are poisonous.

eneralising object properties to new objects in the same category is

n efficient way to make use of our limited memory capacity, and this

eneralisation permeates all interactions with the visual world. 

One way of investigating human categorical knowledge is to ex-

mine how the brain distinguishes objects in the visual world. The

uman visual system can automatically categorise stimuli, from low-

evel visual features, to individual object identity, to increasingly ab-

tract conceptual categories in fractions of a second ( Cichy et al., 2014 ;

ontini et al., 2017 ; Mohsenzadeh et al., 2018 ; Potter et al., 2014 ;

otter and Hagmann, 2015 ; Robinson et al., 2019 ). Categorical dis-

inctions such as animacy are rapidly and subconsciously processed

y the brain ( Carlson et al., 2013 ; Cichy et al., 2014 ; Connolly et al.,

012 ; Contini et al., 2017 ; Grootswagers et al., 2018 ; Konkle and Cara-

azza, 2013 ; Ritchie et al., 2015 ). The representations of higher-order

ategorical distinctions like animacy have been localised to the infer-

temporal cortex ( Haxby et al., 2001 ; Kriegeskorte et al., 2008 ), and

re observable from patterns of brain activity from approximately 100–
∗ Corresponding author. 

E-mail address: ssha0742@uni.sydney.edu.au (S.M. Shatek) . 

ttps://doi.org/10.1016/j.neuroimage.2022.119517 . 

eceived 16 March 2022; Received in revised form 22 July 2022; Accepted 24 July 2

vailable online 25 July 2022. 

053-8119/© 2022 The Authors. Published by Elsevier Inc. This is an open access ar

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
60 ms after stimulus onset ( Contini et al., 2020 ; Goddard et al., 2016 ;

rootswagers et al., 2019 , 2021 ). In addition to higher-order conceptual

rocessing, some of this separation can be explained by differences in

ow and mid-level visual features between animate and inanimate stim-

li ( Grootswagers et al., 2019 ; Long et al., 2018 ; Wang et al., 2022 ).

ven at rapid presentation rates, and when subjects are completing an

nrelated task, animate stimuli are distinguishable from inanimate stim-

li in patterns of EEG recordings ( Grootswagers et al., 2021 ). This au-

omatic identification of animacy has also been shown behaviourally

n children as young as 7 months old ( Träuble et al., 2014 ), leading to

uggestions that learning about animacy early in development is evolu-

ionarily adaptive ( Aslan and John, 2016 ). Neuroscience research has

upported this idea, demonstrating that both the adult brain ( Bao et al.,

020 ; Konkle and Caramazza, 2013 ; Kriegeskorte et al., 2008 ) and the

nfant brain ( Bayet et al., 2020 ; Deen et al., 2017 ) represents whether

omething is animate as part of core visual processing ( DiCarlo et al.,

012 ). 

However, more recent research has shown that the structure of

bject representations in the brain is more complex than a simple

nimate/inanimate dichotomy and may be influenced by an object’s

bility to move independently. Recent neuroimaging work has shown

hat movement and agency are important in animacy judgements,

nd visual stimuli may be better represented in the brain as a spec-

rum, according to their similarity to humans ( Contini et al., 2020 ) or
022 
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heir capacity for agency and goal-directed movement ( Connolly et al.,

012 ; Grootswagers et al., 2022 ; Jozwik et al., 2021 ; Sha et al., 2014 ;

horat et al., 2019 ). These findings suggest that motion, particularly an-

mate motion, is an important property of object processing in the brain.

rain regions active when perceiving motion are also active when view-

ng a still photograph taken mid-motion, also known as implied motion

 Kourtzi and Kanwisher, 2000 ). Studies of implied motion have shown

hat the speed of implied motion has differential effects on brain activity

ased on the category of the object being shown, suggesting that move-

ent is an important factor in category distinctions ( Lu et al., 2015 ).

ollectively, these findings suggest that the brain represents both move-

ent and aliveness. 

Behavioural work further demonstrates how movement and alive-

ess are used to categorise objects. Theoretical models of life status,

uch as the animistic-anthropocentric construction model ( Yorek and

arli, 2009 ), suggest that our conception of what is alive is shaped by

imilarity to humans, particularly in terms of the overlapping concept

f motion, with animals most similar to humans, then plants and then

ther non-living things. Most things that are alive can move, yet move-

ent and aliveness are not the same: not all moving objects are alive

e.g., cars, clouds), and not all objects that are alive move on a time

cale that humans can see (e.g., plants). The co-occurrence of move-

ent and aliveness is so common that it is often a cause for classifi-

ation error. For example, adults often mistake natural moving things

e.g., waves) for being alive when under time pressure to make a deci-

ion ( Goldberg and Thompson-Schill, 2009 ). This co-occurrence makes

t difficult to interpret prior neuroimaging literature on how the brain

ight represent movement, given it is so often confounded by aliveness.

s movement a relevant characteristic of an object for the brain to pro-

ess, and if so, is this solely because it most commonly co-occurs with

nimacy? Investigating these cases that violate the intuitive association

etween aliveness and movement can provide insight into how these

haracteristics are coded by the brain. 

In the current study, we investigated the relationship between move-

ent and aliveness in neural categorisation by taking advantage of un-

sual cases of natural movement that are often misclassified by chil-

ren, and adults under time pressure. We used naturalistic static image

timuli, including typical animate and inanimate stimuli as in prior re-

earch, and also included natural moving objects (e.g., waves, fire) and

lants (e.g., trees, vines). These natural stimuli that violate the associ-

tion between movement and aliveness (i.e., they are moving but not

live, or alive but not moving) allow us to investigate how movement

nd aliveness are processed in the brain. We first ran an online study

o clarify behavioural classifications of the stimuli. Then, in two experi-

ents, we gathered electroencephalography (EEG) data obtained while

articipants classified images according to whether they were alive or

ot (Experiment 1), or whether they could move or not (Experiment

). Using multi-variate pattern analysis techniques, we examined sim-

larities and differences in the temporal dynamics of visual processing

nd decision-making based on a stimulus’ capacity for movement, and

hether it is alive or not. These methods were used to examine if, and

hen, movement (including natural, non-agentive movement such as

rom fire, or waterfalls) is represented in the brain, and whether this is

ependant on the categorisation task being completed. We find that ca-

acity for movement explains significant variance in the EEG data, even

fter controlling for low-level visual factors and aliveness. The findings

uggest that movement is an important organisational principle for ob-

ect representation in the brain. 

. Methods 

This section reports two EEG studies (Experiments 1 and

) with very similar methodology. Stimuli, analysis scripts, re-

ults and anonymised raw EEG data are publicly available at

ttps://doi.org/10.18112/openneuro.ds003885.v1.0.7 (Experiment 1)

nd https://doi.org/10.18112/openneuro.ds003887.v1.2.2 (Experi-
2 
ent 2). Stimuli, analysis scripts, results and data from the online stim-

lus validation study are also publicly available at https://osf.io/jxhcs/ .

To investigate how aliveness and movement are represented in the

rain, we recorded electroencephalography (EEG) in two experiments,

ach consisting of a categorisation task in which participants classified

mages, and passive viewing, in which participants viewed stimuli in

apid streams. The structure of both experiments was identical, includ-

ng the passive viewing blocks. The only difference was the categori-

ation task. In Experiment 1, participants classified images based on

whether they are alive or not ”. In Experiment 2, participants classified

mages based on “whether they can move or not ”. Different participants

ompleted each experiment. Unless stated otherwise, the description of

he methods below applies to both EEG experiments. 

.1. Participants 

In Experiment 1, 24 undergraduate psychology students (15 women,

 men) at the University of Sydney, Australia, participated in exchange

or course credit. The mean age was 19.58 (range 18–26), and all but

ne were right-handed. In Experiment 2, a separate group of 24 under-

raduate psychology students (16 women, 7 men, 1 non-binary person)

t the University of Sydney participated for course credit. One additional

ubject was excluded from Experiment 2 with incomplete data as a re-

ult of a technical error during data collection. The mean age was 19.71

range 18–26), and all but one were right-handed. All participants in

oth experiments had normal or corrected-to-normal vision, were neu-

ologically healthy, and were not colour-blind. Informed written and

ral consent was obtained from all participants prior to participation.

he study was approved by the University of Sydney Ethics Committee.

.2. Apparatus 

Images were shown in the centre of a 1920 × 1080 pixel Asus gam-

ng monitor with a refresh rate of 60 Hz. Participants responded using

he two outermost buttons on a four- button box produced by The Black

ox ToolKit Ltd (layout as shown in Fig. 1 C, D). They were seated 55 cm

way from the screen and stimuli subtended approximately 5° of visual

ngle. EEG was recorded at 1000 Hz on a 128 channel BrainVision Acti-

ap system (Brain Products GmbH), with electrodes located in positions

onsistent with the 10–5 extension of the 10–20 system ( Oostenveld and

raamstra, 2001 ). Data were recorded with an online reference of FCz. 

.3. Stimuli 

Stimuli were 400 realistic colour images collected from free online

mage databases ( www.pixabay.com , www.pexels.com ) under Creative

ommons 0 licenses, and were used in all studies. All text in images

e.g. brand names on cars) was blurred manually using GIMP (v2.10.14,

020), then each image was cropped and resized to 256 by 256 pixels.

timuli were gathered in six categories based on those in Goldberg and

hompson-Schill (2009) : animals, plants, still artificial things, still nat-

ral things, moving artificial things, and moving natural things (shown

n Fig. 1 A). For animals (bee, cat, dog, dolphin, eagle, horse, lemur, pi-

eon, tiger, whale) and plants (cactus, clover, fern, flower, grass, lemon

ree, moss, palm tree, tree, vine), there were 10 objects. For all other

ategories, still artificial things (bench, clothes peg, headphones, lock,

ug), still natural things (cliff, crystal, rock, sand, shell), moving artifi-

ial things (boat, bus, car, helicopter, train), and moving natural things

fire, hot spring, river, waterfall, waves), there were five objects. The

xtra plant and animal categories were included to ensure there was

n equal number of images that were alive and not alive, as well as

qual numbers of moving and still images. Within each category (e.g.,

at, bench), there were 10 different images (e.g., cat1, cat2, … cat10).

here were 400 images in total, each classified according to aliveness

200 living and 200 non-living), movement (200 moving and 200 still),

nd naturalness (300 natural and 100 artificial). For objects that are able

https://doi.org/10.18112/openneuro.ds003885.v1.0.7
https://doi.org/10.18112/openneuro.ds003887.v1.2.2
https://osf.io/jxhcs/
http://www.pixabay.com
http://www.pexels.com
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Fig. 1. Experimental paradigm for our online stimulus validation, and Experiments 1 and 2 with EEG. Sample stimuli are shown in (A). For the online stimulus 

validation experiment shown in (B), participants classified images by either aliveness, capacity for movement, or naturalness. During passive viewing trials of both 

EEG experiments in (C), participants viewed a rapid stream of images and responded to the fixation spot changing to red by pressing a button. During categorisation 

trials for both EEG experiments in (D), participants rapidly categorised images. In EEG Experiment 1, participants responded based on whether each image depicted 

something that was alive or not alive. In EEG Experiment 2, participants responded based on whether each image showed something that could move or could not 

move. Note that all images are magnified here for clarity; for presentation they occupied a smaller proportion of the screen. 
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o move, the stimulus was shown in motion in the image (e.g., birds and

elicopters shown flying, see Fig. 1 A), though all stimuli were static

mages. 

.4. Stimulus validation and model generation 

To validate the stimulus set and generate behavioural models to com-

are to the EEG data, we ran an online experiment using Amazon’s Me-

hanical Turk platform, guided by Grootswagers (2020) , programmed

sing jsPsych ( de Leeuw, 2015 ) and hosted on Pavlovia ( Peirce et al.,

019 , https://www.pavlovia.org/ ). Stimuli, analysis scripts, results and

ata are publicly available at https://osf.io/jxhcs/ . Categorisation re-

ponses served to ensure that people generally agreed upon stimulus

ategory and were used to construct independent behavioural models. 

Mechanical Turk (MTurk) workers were recruited from the U.S.A.

nd Canada to complete the 15 min experiment in return for cash pay-

ent. Participants were randomly allocated to answer one of three ques-

ions about each of the 400 stimuli: (1) “Is the thing in the image alive,

r not alive? ”, (2) “Can the thing in the image move, or is it still? ”, or

3) “Is the thing in the image naturally occurring or man-made? ” Data

as gathered from 50 participants for each question. Participants were

hown one image at a time and instructed to press the ‘F’ and ‘J’ keys on

heir keyboard to indicate their response for that image. The instructions

tated that participants should “try to be fast and accurate. ” Each image

ppeared after a 500 ms fixation cross and remained on the screen until

articipants responded ( Fig. 1 B). 

To ensure we were only using data where participants were complet-

ng the task properly, we removed seven subjects whose overall accuracy

based on expected classification) was less than 50%. We also removed

5 participants who responded in less than 100 ms on more than 25%

f images, as participants are unlikely to be making valid responses in

uch a short time period. These exclusion rates are within the range ex-

ected from online samples ( Thomas and Clifford, 2017 ). After these

xclusions, there were 42 participants who classified by aliveness, 48

articipants who classified by movement capacity, and 38 participants

ho classified by naturalness. For these included participants, any trial

hat had a reaction time more than 3 standard deviations longer than

he mean of all trials pooled across all participants (on average, less than

ne trial per participant) or less than 100 ms (on average, less than one

rial per participant) was also removed. 

To investigate how neural activity was related to behavioural clas-

ifications of the stimuli, we used Representational Similarity Analy-

is (RSA) to generate models of categorical and visual attributes of the

mages ( Kriegeskorte et al., 2008 ). Behavioural models were generated

rom responses of online participants by averaging the percentage of re-

ponses towards the affirmative decision (‘alive’, ‘moves’, or ‘natural’)

or each image and calculating the Euclidean distance between each

air of images. This 400 × 400 matrix was then averaged over all im-

ges within a category to create a 40 × 40 Representational Dissimilarity

atrix (RDM). These RDMs are shown in Fig. 2 A–C. 

.5. EEG experiment procedure 

Participants in both EEG experiments completed 8 blocks of trials, al-

ernating between a passive viewing task (4 blocks) and a categorisation

ask (4 blocks), and always beginning with passive viewing. 

.5.1. Categorisation task 

To see how focusing on aliveness and movement affected neural pro-

essing, participants completed a categorisation task ( Fig. 1 D). Each trial

onsisted of a fixation cross for a random duration between 500 ms and

000 ms, followed by an image in the centre of the screen for 100 ms.

articipants had 1000 ms from stimulus offset to respond on the but-

on box. For Experiment 1, participants decided whether the image was

live or not alive. For Experiment 2, participants decided whether the

timulus could move or not. The response mapping changed over each
4 
lock, such that the side of the button corresponding to ‘alive’ or ‘able to

ove’ switched between left and right every block, and the order of the

apping was counterbalanced across participants. When a participant

esponded, the fixation spot filled in to indicate that a response had been

ecorded ( Fig. 1 D). If there was no response in this time, the screen dis-

layed “Too late! ”, and advanced to the next trial. For each of the four

ategorisation blocks, trials (single image presentation and response, as

escribed above) were chunked into 10 sequences. One sequence con-

ained 40 trials, so that each sequence contained one image from each

ategory (e.g., one dog, one fire). Thus, across the 10 sequences in each

lock, all 400 images were shown. Each sequence lasted approximately

–2 min, and participants were told to take a break between sequences

nd advance at their own pace. 

.5.2. Passive viewing task 

In passive viewing blocks, participants viewed a series of rapid pre-

entation sequences and responded by pressing a button when a fixation

pot changed colour ( Fig. 1 C). Images were shown for 100 ms each, fol-

owed by a 50 ms inter-stimulus interval. This non-category related task

as included to provide baseline neural activity for each image in order

o assess whether movement was processed as a higher-order character-

stic, or a lower-level visual attribute. The collection of the same passive

ask across both experiments also allows the experiments to be directly

ompared. 

In each of the four passive viewing blocks, participants were shown

hree repetitions of each image during passive viewing sequences, equat-

ng to 12 total repetitions of each stimulus across the experiment. These

ere split into 15 short sequences of 80 images each ( ∼12 s each), to

inimise fatigue and eye blinks. All 400 images were displayed in the

rst five sequences, then shuffled and repeated over the next five, and

huffled and repeated over the final five sequences. This ordering en-

ured that no image appeared twice in the same sequence, and that im-

ges were distributed within each block. 

Participants were instructed to press a button as quickly as possible

henever they saw the fixation spot (a bullseye, two concentric black

ircles, shown in Fig. 1 ) change colour to red. There were two to four

andomly located colour changes in the middle 60 presentations of each

equence of 80 images. The concentric circles of the bullseye were used

o ensure there was sufficient contrast with all stimuli to distinguish

olour changes. This task ensured that participants maintained a central

xation and paid sufficient attention to the screen but were not explicitly

ocused on the semantic properties or categories of the images. 

.6. EEG data analysis 

.6.1. EEG preprocessing 

We used a minimal pre-processing pipeline, based on prior work

 Grootswagers et al., 2021 , 2019 , 2019 ; Robinson et al., 2019 ;

hatek et al., 2019 ). Using custom scripts for EEGLab ( Delorme and

akeig, 2004 ) in MATLAB ( The MathWorks Inc, 2020, version 2020a ),

ata were re-referenced to an average reference, low pass filtered at

00 Hz, high pass filtered at 0.1 Hz, then down-sampled to 250 Hz.

pochs of data were created from 300 ms before each stimulus appeared

n the screen to 1000 ms after stimulus onset. 

.6.2. Decoding image category 

To investigate how the different object categories are represented in

he brain, we used multivariate decoding applied to the EEG data in re-

ponse to each image. All decoding analyses were run in MATLAB using

unctions from the CoSMoMVPA toolbox ( Oosterhof et al., 2016 ), using

ll 128 channels from each participant. To test if individual images (e.g.,

ree1, cat1) and categories (e.g., plant, animal) were distinguishable

rom the EEG recording, we conducted pairwise decoding analyses. All

nalyses were conducted timepoint by timepoint relative to when each

mage was displayed. At the individual image level (e.g., tree1, cat1),

e trained a Linear Discriminant Analysis (LDA) classifier on each pair

https://www.pavlovia.org/
https://osf.io/jxhcs/
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Fig. 2. Representational dissimilarity matrices (RDMs) generated from behavioural ratings of stimuli and image-level analysis of stimuli. Areas that are more purple 

(darker) indicate low dissimilarity (more similar). Areas that are more orange (lighter) indicate high dissimilarity (less similar). Each category (e.g., cat, tree) is 

shown in a single row/ column. Panels (A), (B), and (C) illustrate models generated from behavioural ratings of the stimuli from an online stimulus validation task. 

Panels (D), (E), and (F) show models generated by analysis of the low-level features of the stimuli, and panel (G) shows the experimenter-derived expected animacy 

model. Model correlations between these models are shown in (H), and the relationships between the models are shown using Multi-Dimensional Scaling (MDS) 

in (I). Abbreviations on panels (A) – (G) indicate categories; Plants (P), Still Natural (SN), Still Artefacts (SA), Moving Natural (MN), Moving Artefacts (MA), and 

Animals (A). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article). 
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f images from all but one block and tested on those same images from

he left-out block. This was repeated over all pairs of images, for each

lock as the test data. Separate analyses were conducted for categori-

ation and passive viewing. At the category level (e.g., plant, animal),

e conducted a similar pairwise analysis still leaving two images out

o test on, but also excluded these two images from the training set.

or example, to compare plants and animals, a classifier was trained on

locks 1–3 using all plants and animals except a pair of images (e.g.,

ree1 and cat1), and then tested on these left-out images (tree1, cat1)

rom remaining block (block 4). This process was repeated so each pair

f images was left out in each block, then averaged over all pairs. 

.6.3. Representational similarity analysis 

To investigate how movement and aliveness are represented in the

rain, we used Representational Similarity Analysis (RSA) to relate neu-

al activity to behavioural responses as well as lower-level visual fea-

ures that might differ across categories ( Kriegeskorte et al., 2008 ). Be-

avioural Representational Dissimilarity Matrices (RDMs) were calcu-

ated for aliveness, movement and naturalness based on the online stim-
5 
lus validation study, and low-level visual models were calculated for

olour, rectilinearity and patterns of shadow using a greyscale model.

or the colour model, each pixel of each image was allocated values

ithin CIELab colour space, and these values were averaged over all

mages in a category to form a single vector of values for each cat-

gory. The Euclidean distance between categories could then be cal-

ulated. For the greyscale model, each pixel of each image was con-

erted to a single greyscale value. These values were averaged over

ll images in a category, and the Euclidean distance between cate-

ories was calculated to form the 40 × 40 RDM. To control for recti-

inear differences in animacy, we also included a measure of rectilin-

arity from Nasr et al. (2014) , calculated using publicly available code

rom [ https://github.com/cechava/Rectilinearity _ Toolbox ]. As with the

olour and greyscale measures, we calculated the amount of rectilinear-

ty in of each image, then averaged across each category. We then cal-

ulated the Euclidean distance between each category to form a model

f rectilinearity. 

To calculate RDMs for the neural data, we used an LDA classifier at

very time point to compute decoding accuracy for each pair of cate-

https://github.com/cechava/Rectilinearity_Toolbox
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y  
ories (e.g., cats vs rocks), resulting in a 40 × 40 neural dissimilarity

atrix for each time point. This classifier used the same partitioning

tructure as category decoding above, in which each pair of images was

eft out as the testing set for each block and for each pair of categories.

eparate neural RDMs were created for passive viewing and categorisa-

ion trials. 

.6.4. Linear modelling 

To investigate how categories of aliveness and movement account

or neural responses to objects, we ran a series of general linear mod-

ls to see which characteristics best explained the neural processes

ver time in both the categorisation and passive viewing tasks. For the

ategorisation data, eight predictor variables were included: aliveness,

aturalness, movement, colour, greyscale, rectilinearity, animacy, and

timulus-driven neural responses from the passive viewing trials. All of

hese models (except the passive viewing neural models) are shown in

ig. 2 . These eight predictor variables were used to run separate lin-

ar models for each time point, with outcome variable as the neural

DM of the categorisation task at that time point. This process was re-

eated with the passive viewing data as the outcome variable, includ-

ng the first seven predictor variables: aliveness, naturalness, movement,

olour, greyscale, rectilinearity, and animacy. 

The behavioural models of movement, aliveness, and naturalness

 Fig. 2 A–C) were included in the GLMs to assess how these different

mage categories influenced neural responses. We also included low-

evel visual models of colour, greyscale and rectilinearity ( Fig. 2 D–F),

s prior evidence has shown that distinct patterns of neural activity arise

t least to some extent as a result of similar low- and mid-level visual

eatures such as rectilinearity ( Grootswagers et al., 2019 ; Long et al.,

018 ; Wang et al., 2022 ). We also included a binary model of animacy

animals coded as 1, all other categories coded as 0; Fig. 2 G), and the

eural RDM of the passive viewing trials. For each time point, the pas-

ive viewing RDM was taken from the same time point as the categori-

ation task RDM (outcome variable) to account for stimulus-driven neu-

al processes during the categorisation tasks. The combination of these

odels can highlight how stimulus movement and aliveness uniquely

ontribute to neural responses. 

To ensure that multicollinearity was sufficiently low to interpret the

utput of the model, we calculated the variance inflation factors for

ach model based on a downloaded MATLAB function ( Vasilaky, 2021 ).

 measure of multicollinearity, the variance inflation factor indicates

he impact on the variance of the model of adding a particular vari-

ble, compared to if it were independent to all the other variables

 Montgomery et al., 2012 ). A variance inflation factor of one would

ndicate that the variable is independent from the other elements in

he model, with factors close to one indicating fewer potential issues

ith multicollinearity and higher factors indicating more higher multi-

ollinearity ( Thompson et al., 2017 ). The variance inflation factors for

ll variables were low (ranging from 1.01 for movement to 1.40 for nat-

ralness), indicating low multicollinearity between the models. 

.6.5. Neural network 

To investigate whether the characteristics associated with movement

re associated with lower-level visual processing, or more abstract cat-

gorical processing, we compared neural data to different layers of a

eural network. CORnet ( Kubilius et al., 2018 , 2019 ) is a deep neural

onvolutional network designed as a model for the human visual system,

here each convolutional layer represents a different area of the visual

ystem. Feature weights for each image were extracted from the layers

epresenting V1, V2, V4 and Inferotemporal cortex (IT). The distance

etween the feature weights for each image was calculated to form a

00 × 400 RDM, which was then averaged to 40 × 40 so it was the same

ize as the neural RDMs. This process was repeated over each brain re-

ion (layer). To examine which layer of CORnet most closely resembled

eural activity over time, we examined the correlation between each

ayer and the neural data for each time point. 
6 
.7. Statistical analysis 

We used Bayesian inference to examine differences in accuracy and

eaction time across stimulus categories. 

For all comparisons, we used the BayesFactor package

n R ( Morey et al., 2018 ). Following recommendations in

eichmann et al. (2022) , we used a JZS prior ( Rouder et al., 2009 )

ith a scale factor of 0.707. This is the default prior and scaling in

he BayesFactor package because it makes minimal assumptions about

he expected effect size, and serves as a “non-informative default ”

 Rouder et al., 2009 , p. 232). 

To calculate statistics for the differences in behavioural classification

etween animals and plants, we used the Bayesian equivalent of t-tests

 Rouder et al., 2009 ). We also used Bayesian linear models to determine

f naturalness and capacity for movement influenced reaction times or

ccuracy. Models were built to express all combinations of each vari-

ble, in addition to participant ID. To determine whether naturalness

nd movement had an effect on reaction times and accuracy, we com-

ared an additive model (movement + naturalness + subject ID) to a

odel without each variable in turn (for movement, naturalness + sub-

ect ID). A larger Bayes Factor would indicate that the inclusion of that

ariable makes a model that is more likely given the data ( Rouder et al.,

012 ). This can be interpreted similarly to the main effect in a tradi-

ional ANOVA. 

For decoding analyses, we used a series of t-tests using the ttestBF

unction ( Morey et al., 2018 ) from the BayesFactor package with the

arameters described above. The alternate hypothesis is that the decod-

ng is above chance (50%), and the null-interval was effect sizes from

egative infinity up to 0.5, as effect sizes during baseline periods prior

o stimulus onset from previous work have shown this to be most ap-

ropriate ( Teichmann et al., 2022 ). This formed a one-sided hypothesis

hat the effect size for alternate hypothesis should be positive. For linear

odelling, in which both negative and positive results are meaningful,

e used the same procedure with the alternative hypothesis that the

etas are different to zero, with a two-sided prior from − 0.5 to 0.5. 

Bayes Factors are interpreted according to ( Jeffreys, 1998 ), where

ayes Factors larger than 30 are very strong evidence for the alternate

ypothesis, Bayes Factors larger than 10 are strong evidence for the

lternate hypothesis, Bayes Factors larger than 3 provide some evidence

or the alternate hypothesis, and Bayes Factors smaller than 1/3 provide

vidence for the null hypothesis. 

. Results 

We used behavioural and neural measures to investigate how alive-

ess and movement are processed by the brain. In two experiments, par-

icipants rapidly classified images according to aliveness (Experiment 1)

r capacity for movement (Experiment 2) while we measured neural re-

ponses with millisecond precision. 

.1. Behavioural: passive viewing 

In the passive viewing task, participants performed an orthogonal

xation change task. Behavioural performance on the passive viewing

locks of both EEG experiments indicated that participants were en-

aged with the task. Participants correctly identified the target colour

hange within 600 ms on 93.77% of occurrences for Experiment 1

SE = 0.93, range 79.07–100%) and on 95.76% of occurrences for Ex-

eriment 2 (SE = 0.54, range 88.04–98.89%). 

.2. Behavioural: categorisation task 

To examine the relationship between movement and aliveness in cat-

gorisation of naturalistic image stimuli, we used behavioural metrics

reaction time, classification accuracy) and multivariate pattern anal-

sis of neural data. The median reaction time for Experiment 1 was
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Fig. 3. Median response times and classifications of stimuli from EEG Experiments 1 and 2. Data from participants considering whether the stimulus was alive or not 

is shown in (A) and data from classifying images by capacity for movement are shown in (B). Sample images below correspond to the labelled data points, showing 

a selection of responses. 
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57 ms (SE = 10.7 ms, range of participant means 322 ms – 561 ms),

nd for Experiment 2 was 456 ms (SE = 11.53 ms, range of participant

eans 373 ms – 588 ms). Participants showed high accuracy in clas-

ifying the stimuli, with few trials (on average, ∼16 of 1600 trials per

articipant) that timed out without a response (misses). In Experiment

, the mean percentage of correct responses was 87.42% (SE = 1.4152,

ange 69.75–97.5%), with an average of 1.10% misses (SE = 0.26,

ange 0.13–5.94%). For Experiment 2, there were 82.97% (SE = 1.64,

ange 61.67–94.42%) correct responses, on average, with 0.97% misses

SE = 0.18, range 0.19–3.00%). Though some participants had low ‘ac-

uracy’ scores, these always arose from consistent classification in the

pposite direction from what was predicted (e.g., consistently respond-

ng that plants were not alive in Experiment 1, or consistently respond-

ng that moving natural stimuli did not move in Experiment 2). 
7 
.3. Behavioural: experiment 1 

We were interested in how image category influenced how partici-

ants categorised images according to whether they were alive or not

n Experiment 1 ( Fig. 3 A) First, we assessed performance for the alive

mages, which consisted of animals and plants, as previous work has

hown that animals are considered ‘more alive’ than plants ( Yorek et al.,

009 ). Bayesian t-tests were used to evaluate whether there were differ-

nces in reaction time and classification between plants and animals.

here was very weak evidence for differences in reaction time between

lants and animals in the aliveness task of Experiment 1 (BF = 1.09) and

ome evidence that responses to animals were faster than plants in the

ovement task of Experiment 2 (BF = 3.17). However, there was strong

vidence that plants were classified as “not alive ” more often than ani-
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als (BF = 16.66), suggesting that plants are considered ‘less alive’ than

nimals, as predicted by behavioural models of aliveness ( Yorek and

arli, 2009 ). 

For the stimuli that are not alive, we used Bayesian linear mod-

lling to investigate how moving and natural stimuli influenced alive-

ess judgements compared with still and artificial stimuli. Natural stim-

li were mistakenly classified as alive more often (BF = 184.70) and

ore quickly (BF = 3757.79) than artificial stimuli. This is somewhat

xpected, given that all of the stimuli that are alive are also natural. Ca-

acity for movement also influenced judgements of aliveness, with non-

iving moving stimuli classified as alive more often (BF = 132.28) and

ore slowly (BF = 667.90) compared to still stimuli. These results are

n line with use of intuitive biological knowledge under time pressure

 Goldberg and Thompson-Schill, 2009 ), mistaking moving and natural

timuli for being alive. 

.4. Behavioural: experiment 2 

We were also interested in how image category influenced move-

ent classification in Experiment 2 ( Fig. 3 B). There was weak evidence

or no difference in reaction time (BF = 0.68) in classifying plants and

nimals as moving or non-moving. There was also weak evidence that

nimals were classified as moving more often than plants were classified

s still (BF = 3.17). For non-living stimuli, we investigated the impact of

apacity for movement and naturalness on movement classification us-

ng the Bayesian equivalent of an ANOVA. We found that natural stim-

li were classified less accurately than artificial stimuli (BF = 66.50),

nd moving stimuli were also classified less accurately than still stim-

li (BF = 1815.09). There was weak evidence for the null hypotheses

hat naturalness did not affect reaction times (BF = 0.92), and weak

vidence for the null hypothesis that movement did not affect reaction

imes (BF = 0.29). Crucially, there was a significant interaction effect

BF = 168.7) for accuracy, suggesting that stimuli that are both moving

nd natural were responded to less accurately. This difference is clear

n Fig. 3 B (pale pink circles), showing the low agreement across partic-

pants on whether these natural moving stimuli are moving or not. 

.5. Decoding image category 

We were interested in the temporal dynamics of visual informa-

ion processing in the brain, from low-level image identity to cate-

ory level representations. To test if individual images (e.g., tree1,

at1) and categories (e.g., plant, animal) were distinguishable from

he EEG recording, we used a linear discriminant classifier to classify

timuli at these two levels. Neural responses contained information

bout image identity (e.g., dog1) and category (e.g., animal) from 90

o 120 ms after stimulus onset, characteristic of early-stage visual pro-

essing ( Carlson et al., 2013 ; Cichy et al., 2014 ). Both when participants

ere passively viewing images ( Fig. 4 A, C) and when they were classi-

ying them ( Fig. 4 B, D), information about stimulus identity remained

resent for more than 400 ms after stimulus offset. This is in line with

rior work demonstrating enduring neural representation after stimulus

ffset in rapid serial visual presentation sequences ( Grootswagers et al.,

019 ; Mohsenzadeh et al., 2018 ; Robinson et al., 2019 ). 

In both EEG experiments, participants completed the same passive

iewing task ( Fig. 4 A, C). At both levels of classification, neural data

evealed similar information was present over time for the passive trials

n both experiments. This similarity indicates that there are unlikely to

e major differences in data quality between the two experiments. 

.6. EEG: linear modelling 

To investigate how much the conceptual categories of movement and

liveness explained brain activity, we used linear modelling to see which

heoretical models best explained patterns of brain activity over time

 Fig. 5 ), in both the passive and categorisation tasks. These linear models
8 
llowed us to assess how movement and aliveness account for the neural

ata both during task-related classification and passive viewing, once

ccounting for stimulus naturalness, animacy, low-level features such

s colour and rectilinearity. 

We also ran a model to predict the passive viewing neural data, to

xamine whether the same information about movement and aliveness

as present without a relevant semantic task. For passive viewing, alive-

ess explained patterns of neural activity 120 ms after stimulus presen-

ation ( Fig. 5 A), for a brief period of approximately 50 ms. In contrast,

nformation about movement was present slightly later, from 200 ms for

oth experiments, and for a longer period of time ( Fig. 5 C). 

During the categorisation task, aliveness explained patterns of neu-

al activity for a very brief period from 120 ms to 150 ms after stimulus

nset in Experiment 1 and 130 ms to 160 ms after stimulus onset in

xperiment 2 ( Fig. 5 B). In contrast, movement explained variance in

atterns of neural recordings from 180 ms in Experiment 1 and 200 ms

n Experiment 2, with a peak at around 230 ms - 240 ms for both exper-

ments, until approximately 320 ms after stimulus onset for Experiment

 and 500 ms after stimulus onset for Experiment 2 ( Fig. 5 B). Though

oth aliveness and movement had a similar time course in both tasks,

liveness seems to have an earlier and less prolonged peak than move-

ent. 

.7. Neural network 

To further investigate whether the neural signal more closely re-

embled higher-order processing or lower-level visual processing, we

xamined the correlation between neural activity and layers of a neu-

al network modelling the visual system, CORnet ( Kubilius et al., 2018 ,

019 ). CORnet includes layers that resemble processing in four visual

reas: V1, V2, V4 and Inferotemporal cortex (IT). In both experiments,

ll four layers were correlated with neural activity from approximately

00–120 ms after stimulus presentation to approximately 180 ms after

nset, with a peak at approximately 120–130 ms ( Fig. 6 ). Notably, only

he layer resembling IT is significantly correlated with neural activity af-

er approximately 300 ms post-stimulus onset. This extended correlation

ith the IT layer suggests that the neural activity from around 300 ms

s related to higher-order classification, and that the later significance

f movement in the linear modelling may be attributed to higher-order

ategorisation processes. 

. Discussion 

In this study, we used electroencephalography (EEG) to investigate

he contribution of movement and aliveness in categorisation. Previous

ork has focused on animacy as a major dimension in visual object pro-

essing, but animacy tends to co-occur with movement, raising the ques-

ion of how much these object features contribute to categorical object

rocessing in the brain. Here, we show that movement is an important

rganisational principle in the brain. We use naturalistic image stimuli

ncluding moving elements of the natural landscape (e.g., waterfall, fire)

o show that the brain processes movement associated with non-living

inds as well as movement from living things. EEG data revealed that

nformation about capacity for movement was present in neural signals

oth during active classification as well as passive viewing of stimuli, af-

er accounting for categorical similarities in colour, shape, naturalness,

nimacy, and aliveness. The results show that capacity for movement is

n important dimension in human visual object perception. 

Behavioural results from the categorisation task showed that mov-

ng things (waterfalls, clouds, etc.) were more likely to be judged

s alive under time pressure, and that elements of the natural land-

cape tend to be perceived as still. These trends are in line with prior

ork showing that under time pressure, adults may rely on intuitions

bout the world ( Goldberg and Thompson-Schill, 2009 ; Kelemen et al.,

013 ; Shtulman and Harrington, 2016 ; Shtulman and Valcarcel, 2012 ;

oung and Shtulman, 2018 ). Our behavioural results build on these
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Fig. 4. Decoding stimulus identity. Plots show pairwise decoding accuracy from an LDA classifier over time for image-level (A, B), and category-level (C, D) 

classification. The dashed line at 0.5 indicates chance decoding, with higher values indicating more discriminability between classes of stimuli. Blue lines show data 

from Experiment 1 (aliveness task) and green lines show data from Experiment 2 (movement task). Shaded areas indicate standard error across subjects ( N = 24 for 

each experiment). Bayes Factors (BF) above 30 (very strong evidence) are shown in the filled coloured dots, BF between 10 and 30 (strong evidence) are shown as 

unfilled coloured dots, BF between 1/3 and 10 are shown in grey, and BF below 1/3 (evidence for the null) are shown in black. For passive viewing blocks (A, C) 

the task was the same across both experiments. For categorisation trials (B, D) participants classified stimuli by aliveness in Experiment 1 (blue) and by capacity for 

movement in Experiment 2 (green). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article). 
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rior findings to show that application of scientific intuition in adult-

ood is not limited to judgements about the accuracy of complex state-

ents about physics and chemistry, or judgement of words that are

sed in prior work, but also extends to basic judgements of aliveness

nd to naturalistic pictorial visual stimuli. The presence of these be-

avioural classification biases under time pressure may reflect that they

re adaptive in most situations in both modern times and for our ances-

ors ( New et al., 2007 ). For example, assuming that moving things are

live allows for rapid reactions even when these assumptions are wrong,

uch as moving away from an oncoming car. The behavioural results,

herefore, suggest that natural movement is uniquely positioned in a

pectrum of movement because of its ambiguous causal relationships. 

Though here we consider all kinds of movement together, it is

lear that moving natural things like fire and waterfalls move in dif-

erent ways to animals and vehicles. Animate movement differs from

nanimate movement, in terms of having a goal-directed trajectory

 Gergely et al., 1995 ), predictability of movement ( Pratt et al., 2010 ),

nd the speed and angle of directional changes ( Tremoulet and Feld-

an, 2000 ), amongst other things. Given the evidence of neural pro-

essing of goal-directed movement and agency ( Thorat et al., 2019 ) it is

ossible that difficulties and inconsistencies in classifying movement in

he natural landscape (e.g., see pink dots in Fig. 3 ) occur because there

s no obvious agent causing natural movement. This is in contrast to all

he other moving stimuli, which can generate spontaneous goal-directed
9 
ovement (animals) or move with the intervention of humans (all the

oving man-made stimuli were vehicles). Future studies may evaluate

hether moving artificial stimuli that move without clear human inter-

ention (e.g., clocks, fireworks) show similar response patterns. 

Alternately, these difficulties in classifying the moving natural ob-

ects may be due to colloquial implications of the language we used in

he instructions. For example, there were four participants in Experi-

ent 1 who consistently responded that plants were not alive. The term

alive’ can colloquially be interpreted to mean ‘animate’ ( Leddon et al.,

009 ) particularly in childhood, so it is possible that these partici-

ants interpreted the instructions as such. Similarly, in Experiment 2,

ome participants consistently classed the moving natural things as still,

otentially because they interpreted ‘can move’ to refer only to self-

enerated movement, animate movement, or as movement of an item

elative to the environment it is in. However, these same participants

lso reliably classified vehicles as moving, so it is unclear whether this

s a semantic or lexical distinction that is important. Further research is

equired to fully understand the impact of lexical factors on classifica-

ion behaviour in the current context. 

Our behavioural results suggest movement and aliveness are related

n making judgements about stimuli, yet our linear modelling showed

hat they are processed differently in the brain. Information about move-

ent was present in neural activity around 180–200 ms after stimulus

nset, regardless of the task ( Fig. 5 C, D). Even after accounting for visual
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Fig. 5. Aliveness and movement explained a significant proportion of brain activity during categorisation and passive viewing tasks. Plots show beta estimates for 

aliveness (A, B) and movement (C, D) from linear modelling, which included behavioural (aliveness, movement, naturalness) and image-level (colour, greyscale, 

rectilinearity) models, as well as a model of animacy. For the categorisation task (right column), the passive viewing RDM from the corresponding time point was 

also included. Blue lines show data from Experiment 1 (aliveness task) and green lines show data from Experiment 2 (movement task). Shaded regions show standard 

error across subjects ( N = 24 for each experiment). Bayes Factors (BF) above 30 (very strong evidence) are shown in the filled coloured dots, BF between 10 and 30 

(strong evidence) are shown as unfilled coloured dots, BF between 1/3 and 10 are shown in grey, and BF below 1/3 (evidence for the null) are shown in black. 

c  

i  

f  

2  

a  

t  

s  

m  

c  

d  

p  

i  

a  

i  

r  

u  

n  

w  

s  

r  

m  

t

 

p  

p  

n  

(  

v  

a  

(  

I  

i  

s  

t  

(  

m  

p  

a  

c  

m  

t  

w  

t  

a  

r  

m  

m  

s  

b

ontrols, the movement model still explained a large portion of variance

n brain activity, indicating that capacity for movement is an inherent

eature of object representations. After an initial peak at approximately

30–240 ms, there was an extended period where movement explained

 proportion of the variance in neural activity until around 500 ms af-

er stimulus onset. The combination of an early peak and an enduring

ignificance suggests that this ‘movement’ factor is capturing some ele-

ents of automatic early visual processing, as well as some higher-order

ognitive influences in the later period while participants are making a

ecision on how to classify the stimuli. Similar temporal dynamics are

resent in the first 300 ms of linear modelling of neural processing dur-

ng passive viewing ( Fig. 5 A, C), indicating that visual representations

re inherently organised in terms of capacity for movement, even when

t is not the focus of the task. It is also possible that these movement rep-

esentations are driven by animacy differences within the living stim-

li. However, when only considering the non-living images (moving and

on-moving artefacts and natural things), movement remains decodable

ithin both the passive viewing and the categorisation task, albeit more

trongly in the categorisation task (Supplementary Fig. 1). Thus, visual

epresentations appear to be organised in terms of capacity for move-

ent, and these representations of movement may be enhanced when

hey are task-relevant. 

To investigate whether the later periods of significance represent

rocessing in brain areas associated with higher-order abstract object

erception ( Carlson et al., 2013 ), we compared the brain data to a
10 
eural network. The correlations between brain activity and CORnet

 Kubilius et al., 2018 , 2019 ), a neural network designed to model the

isual system, revealed that early neural activity correlated well with

ll layers (V1, V2, V4 and IT) with a peak at approximately 120–130 ms

 Fig. 6 ). The earlier layers remain significant for a short period of time.

n both experiments from approximately 300 ms onwards while partic-

pants were classifying the stimuli, patterns of brain activity were most

imilar to the IT layer, indicating that neural representations in this later

ime period were likely to be more abstract, higher-order classifications

 Carlson et al., 2013 ). In particular, the movement task of Experiment 2

ay engage more higher-order processing than the aliveness task in Ex-

eriment 1. The correlation between the IT layer of CORnet and neural

ctivity appears to be sustained longer in the movement task ( Fig. 6 B)

ompared to the aliveness task ( Fig. 6 A), and it seems that movement

ay explain more variance in neural activity in Experiment 2 compared

o Experiment 1 ( Fig. 5 D). Similarly, object category (e.g., animal, plant)

as more separable in the neural responses during the movement task

han the aliveness task ( Fig. 4 D), further suggesting that judgements

bout movement might inherently involve some higher-level category

esponses. The combination of these analyses suggests that the ‘move-

ent’ factor in the current experiment represents some combination of

ore abstract features at later time points, in addition to some visual

imilarity at earlier time points between all things that move, such as

lurred edges. 
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Fig. 6. Correlation between neural activity and layers of CORnet ( Kubilius et al., 2018 , 2019 ) representing areas of the visual system, for Experiment 1 (A) and 

Experiment 2 (B) during the categorisation task. Shaded regions show standard error across subjects ( N = 24 for each experiment). Bayes Factors (BF) above 30 (very 

strong evidence) are shown in the filled coloured dots, BF between 10 and 30 (strong evidence) are shown as unfilled coloured dots, BF between 1/3 and 10 are 

shown in grey, and BF below 1/3 (evidence for the null) are shown in black. 
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It is notable that even when participants were classifying the images

y aliveness, movement still explained variance in neural activity (blue

ines in Fig. 5 D). This suggests that when judging if something is alive,

e may be using the quality and type of the movement to provide clues

bout aliveness. This would fit with an evolutionary explanation of the

urrent effects; threats to our ancestors were primarily moving animate

hings, and thus detection and distinction of animals rapidly in the envi-

onment may have been advantageous for survival ( New et al., 2007 ). As

oted above, it is also the case that the quality and type of movement

ssociated with animates differs from movement in the natural envi-

onment. It is possible that these differences in movement contribute

o the decision-making about whether something is alive or not. This

igher-order processing would fit with the hierarchy proposed in some

ehavioural and philosophical models of aliveness, which claim that we

nderstand whether something is living based on similarity to a human

rototype, from humans, to moving things and plants, and to non-living

hings ( Yorek and Narli, 2009 ). 

A particularly interesting finding was that aliveness only explained

atterns of brain activity in a very brief period shortly after stimulus

nset. Attention to particular features of a stimulus based on the task

an affect neural representations ( Harel et al., 2014 ), and thus we were

urprised that aliveness did not account for more variance in brain ac-

ivity in Experiment 1 when it was the focus of the task. There is little

onsensus about the degree to which aliveness explains patterns of brain

ctivity in object representations, with some work showing that alive-

ess is a better correlate of brain activity than animacy ( Contini et al.,

020 ), and others showing that it is important for behaviour but does

ot explain variance in brain representations ( Jozwik et al., 2021 ). The

t of aliveness models may depend on the choice of stimuli; in Contini

nd colleagues’ ( 2020 ) study, robots and toys appeared more animate

han inanimate, reducing the fit of the animacy model compared to the

liveness model. In the current study, aliveness may have poor explana-

ory power in our linear models because the differences between living

nd non-living stimuli are captured by other variables in the linear mod-

ls, particularly naturalness which is not evenly distributed across alive

nd non-alive stimuli, and the low-level visual correlates of aliveness

uch as rectilinearity ( Nasr et al., 2014 ). 

Converging evidence from neuroscience and behaviour has shown

hat animacy and aliveness are best described as represented on a contin-

um according to capacity for goal-directed movement ( Connolly et al.,

012 ; Contini et al., 2020 ; Sha et al., 2014 ; Thorat et al., 2019 ;

orek et al., 2009 ). In the current study, we show that capacity for

ovement is an important dimension in human visual object percep-

ion, not only for animate movement, but also for inanimate movement

n the natural world. Our results support previous work showing that
11 
nimacy processing in the brain is closely related to the capacity for

elf-initiated movement and extend this to show that natural movement

ay be a part of this spectrum. Overall, our results show that capacity

or movement is an important dimension in the representation of visual

bjects in humans. 
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