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Investigating how goals impact the way we explore, represent, and interact with the world is 

vital for understanding human cognition. In their insightful review, Molinaro & Collins 

(2023) redefine the conventional role of goals in computational theories of learning and 

decision-making, arguing that in reinforcement learning frameworks, traditionally ‘fixed’ 

elements (e.g., states, actions, and rewards) are in fact intricately linked to and influenced by 

an agent’s current goals. In support of their claim that goals are dynamic elements that 

actively shape information processing altering an agent’s state, they draw on fMRI work 

showing that neural representations in prefrontal cortex vary systematically when participants 

imagine using the same object to achieve different goals (Castegnetti et al., 2021). These and 

other findings suggest that goals do not only influence high-level cognitive processes, but can 

also modulate the encoding of sensory information, including representations in early 

sensory areas (Schaffner et al., 2023). Here we provide nuance to this perspective by 
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highlighting the obligatory and largely automatic nature of early sensory processing, wherein 

evoked responses to complex stimuli (e.g., faces, objects) encode visual input in a manner 

that is largely independent of an agent’s goal state. This caveat arises out of the time-resolved 

neural decoding literature that suggests that while the observer’s task undoubtedly guides 

attention and goal states, its influence on the early stages of visual processing is 

comparatively subtle. 

A large body of M/EEG decoding work indicates that prioritisation of task-relevant 

information typically manifests as a relatively late modulation of visual processing, with 

(rather modest) effects arising at least 150-200 ms after stimulus onset (Chen et al., 2023; 

Grootswagers et al., 2021; Moerel et al., 2022; Shatek et al., 2022). For example, when 

observers view superimposed gratings with distinct orientations, both orientations are 

represented equally in early EEG responses, even though participants must selectively report 

the orientation of just one (colour-indicated) grating, while ignoring the other (Moerel et al., 

2022). Attentional enhancement of orientation decoding is only evident some 230 ms after 

stimulus onset, suggesting initial encoding of low-level visual features is robust to the 

observer’s specific goal.  

Further along the visual hierarchy, encoding of semantic features of objects also appears 

consistent under varying goal-states (Shatek et al., 2022). Observers in one EEG study 

passively viewed images of stationary living entities (e.g., plants) or moving inanimate 

phenomena (e.g., waves), or else actively categorised them according to either aliveness or 

capacity for movement. Remarkably, early neural representations of both dimensions, as well 

as stimulus category, were highly similar across the different tasks, indicating that 

participants’ goals minimally impacted the encoding of high-level stimulus features. 

Importantly, the observation that early neural representations of both low- and high-level 
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object features appear generally robust to task context does not conflict with fMRI findings 

that tasks can modulate information in early sensory areas (which receive feedback inputs), 

but rather underscores the robustness of feedforward visual processing in the first 150 ms 

(Robinson et al., 2023). 

Along a separate line, there is also evidence that agents can passively acquire meaningful 

sensory representations in the absence of goals, merely via exposure to statistical regularities 

in the environment. For example, untrained deep neural network models of the human visual 

hierarchy naturally form units that respond to faces, simply due to random variations in initial 

parameters, suggesting the potential for cognitive functions like face recognition to emerge 

organically (Baek et al., 2021). Similarly, unsupervised networks that encode visual 

similarities between objects, automatically represent attributes such animacy and size, 

producing sensory representations remarkably similar to those in high-level human vision 

(Doshi and Konkle, 2023). It is plausible that the brain can similarly employ unsupervised 

learning to optimise sensory representations. For example, infants actively seek novel 

information (Kidd and Hayden, 2015) – a wonderful example of goal-directed behaviour 

guiding visual attention and thus determining which sensory input arrives in visual cortex. In 

this sense, goals indeed ‘shape’ the representation of the environment (Molinaro and Collins, 

2023). Nevertheless, the subsequent initial processing of this incoming sensory information 

remains largely automatic, and thus indicative of goal-independent learning. Similarly, while 

repeated exposure or practice can improve sensory processing efficiency, such learning is 

likely unaffected by immediate goals due to the need for gradual adaptation (Goldstone, 

1998).  

To summarise, while it is clear that goals shape the way we interpret and learn about the 

world (Molinaro and Collins, 2023), evidence from both neural decoding and unsupervised 



 4 

learning shows that goals are not a necessary prerequisite for agents to construct meaningful 

sensory representations from environmental patterns to aid learning. This points to a dual 

capability of cognitive systems in learning: 1) the flexibility to adaptively seek and prioritise 

information guided by goals, and 2) the capacity to exploit robust and largely automatic 

sensory representations. Integrating these dual capabilities into computational models could 

advance current theoretical frameworks and practical applications in learning and decision-

making. 
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