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Abstract

■ Numerical format describes the way magnitude is conveyed,
for example, as a digit (“3”) or Roman numeral (“III”). In the
field of numerical cognition, there is an ongoing debate of
whether magnitude representation is independent of numerical
format. Here, we examine the time course of magnitude pro-
cessing when using different symbolic formats. We presented
participants with a series of digits and dice patterns correspond-
ing to the magnitudes of 1 to 6 while performing a 1-back task
on magnitude. Magnetoencephalography offers an opportunity
to record brain activity with high temporal resolution. Multi-
variate pattern analysis applied to magnetoencephalographic
data allows us to draw conclusions about brain activation patterns

underlying information processing over time. The results show
that we can cross-decode magnitude when training the classifier
on magnitude presented in one symbolic format and testing the
classifier on the other symbolic format. This suggests a similar
representation of these numerical symbols. In addition, results
from a time generalization analysis show that digits were accessed
slightly earlier than dice, demonstrating temporal asynchronies
in their shared representation ofmagnitude. Together, ourmethods
allow a distinction between format-specific signals and format-
independent representations of magnitude showing evidence
that there is a shared representation of magnitude accessed via
different symbols. ■

INTRODUCTION

Numbers are vital in our everyday life: We need them to
count, calculate, and compare. Symbolic notations of
numbers allow us to understand and interact with distinct
quantities. We use a variety of symbolic notations that
can all convey the same quantity. For example, the same
magnitudes can be expressed using digits (“3”), Roman
numerals (“III”), or words (“three”). A central debate in
the field of numerical cognition is whether there is a
shared brain representation of magnitude or whether
representation varies depending on numerical format
(Cohen Kadosh & Walsh, 2009).
How does the brain represent magnitude information

across different symbolic notations?1 Most previous studies
examining magnitude processes accessed via different
symbols, such as digits and number words, have used fMRI
to compare spatial overlaps of activity (e.g., Eger, Sterzer,
Russ, Giraud, & Kleinschmidt, 2003; Naccache & Dehaene,
2001; Pinel, Dehaene, Rivière, & LeBihan, 2001). Although
there is some debate about whether numerical processing
is independent of notation, most of these studies suggest
that the intraparietal sulcus is critically involved in numer-
ical processing independent of notation type (for reviews,
see Nieder & Dehaene, 2009; Dehaene, Piazza, Pinel, &
Cohen, 2003). Although many of these studies show evi-
dence for spatial overlap in the brain’s representation of

magnitude across symbols, the dynamic emerging repre-
sentation of magnitude potentially might have different
timing profiles across formats.

Studies using EEG have shown that magnitudes pre-
sented indifferent formats are processed similarly over time
(Libertus et al., 2007; Temple & Posner, 1998; Dehaene,
1996). These studies have used univariate analyses to
examine magnitude processing over time, averaging ac-
tivity over many trials to find global activation differences
between different stimuli in single EEG channels. A more
sensitive approach is multivariate pattern analysis (MVPA),
which allows comparison of activity patterns (Tong &
Pratte, 2012; Kriegeskorte, Goebel, & Bandettini, 2006;
Kamitani & Tong, 2005; Carlson, Schrater, & He, 2003;
Cox & Savoy, 2003; Haxby et al., 2001; Edelman, Grill-
Spector, Kushnir, & Malach, 1998). This approach can test
the representational overlap between different symbolic
formats of magnitude and, with magnetoencephalography
(MEG), how it unfolds over time (Raizada, Tsao, Liu, &
Kuhl, 2009). The current study uses MVPA for the time-
series neural data (Grootswagers, Wardle, & Carlson,
2016), a novel approach for the field of numerical cogni-
tion. We use MEG, which has high temporal resolution,
to investigate the time course of processing magnitude
when accessed via two different symbolic formats: digits
and dice. Applying MVPA to time-series neural data allows
us to answer the following questions: (1) Is magnitude in-
formation conveyed by different symbols (digits and dice)
processed in a similar way over time? (2) Can a classifier1Macquarie University, 2University of Sydney
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trained on one numerical symbol successfully generalize
to another symbol? Such a finding would be strong evi-
dence in favor of a shared representation of magnitude
regardless of notation.

An inherent challenge in studying magnitude process-
ing is the control for visual confounds, because there are
unavoidable differences in stimuli representing different
magnitudes (e.g., Bulthé et al., 2014; Eger et al., 2009). In
our design, we aimed to address this challenge in three
ways. First, we presented stimuli in different locations on
the screen to add variability to the low-level signals and
minimize retinotopic differences between stimuli. Sec-
ond, we modeled the effects of low-level features to
quantify inevitable low-level stimulus differences, which
could then be regressed out from the magnitude analysis.
Third, we drew all of our main conclusions concerning
magnitude based on similarities of processing magnitude
when accessed via two different symbolic notations:
digits and dice. As the low-level features of dice do not
vary in the same way as those of digits, the key results
cannot be driven by low-level features. Using these care-
ful controls to minimize the effects of visual feature dif-
ferences, we addressed the key question of whether
there is a shared representation of magnitude across
symbolic notations.

METHODS

Participants

Twenty participants (14 women, mean age = 28.5 years,
SD = 8.6 years, age range = 20–51 years, one left-handed)
completed the study. All participants reported normal or
corrected-to-normal vision. Participants gave informed
consent before the experiment and were reimbursed with
$20/hr. During MEG recording, participants were asked to
complete a magnitude 1-back task (see below) to ensure
they attended the stimuli. One participant performedmore
than 2 SDs below the group mean in this task and was
therefore excluded from analysis, leaving 19 participants

in total (13 women, mean age = 28.5 years, SD= 8.8 years,
age range = 20–51 years, one left-handed). The study was
approved by the Macquarie University human research
ethics committee.

Procedure

Participants completed eight blocks of a 1-back task (Fig-
ure 1) while lying in a dark magnetically shielded room
for MEG recordings. Each block contained 216 trials. In
each trial, participants were presented with a black fixa-
tion cross and four black outlined squares as place-
holders around it. The presentation duration of the
fixation screen varied on a trial-to-trial basis between
900 and 1200 msec. Then, a black numerical symbol
appeared in one of the four placeholders while the fixa-
tion cross and four squares remained visible. The squares
surrounding each stimulus were at 2.85° visual angle. The
horizontal and vertical distances between these squares
were at 6.9° and 8.8° visual angle, respectively. We used
two different numerical symbols as format (dice or digits)
with magnitudes of 1–6. Overall, there were 48 different
stimuli (four locations, two formats, six magnitudes),
which were repeated 32 times throughout the experi-
ment. Stimuli remained on the screen for 83 msec. Partic-
ipants were asked to push a button if the same magnitude
repeated, regardless of location (four squares) or numer-
ical format (digits or dice). There were 24 such repeat
trials per block in which participants were meant to press
the button. These trials were excluded from analysis. RT
was limited to a maximum of 800 msec after stimulus
onset. Participants received feedback on their accuracy
after each block. Participants were instructed to fixate
on the fixation cross throughout the experiment.

Apparatus and Preprocessing

Before the MEG recordings, participants’ head shapes
were measured using a digitizer pen (Polhemus Fastrak,

Figure 1. On every trial,
participants were presented
with a magnitude between 1
and 6 in one of two different
numerical symbols (digits or
dice) in one of four locations.
The possible locations were
framed in black. Then, a fixation
screen was presented for a
variable duration between 900
and 1200 msec. The fixation
duration was sampled at random
from a uniform distribution.
The task was to press a button
when the same magnitude
repeated on consecutive trials.
During the poststimulus fixation
period, participants had a
maximum of 800 msec to respond.
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Colchester, VT). Participants wore an elastic cap with five
marker coils throughout the session to measure the head
position before and after the experiment. During the
MEG recording, stimuli were projected onto a translucent
screen mounted in the magnetically shielded room.
MATLAB with Psychtoolbox extension (Kleiner et al.,
2007; Brainard, 1997; Pelli, 1997) was used for stimulus
presentation. Button presses were recorded with a bi-
manual four-button fiber optic response pad (Current
Designs, Philadelphia, PA). Participants held one of the
response pads in their hands and were instructed to
press the button with their thumb. The neuromagnetic
recordings were obtained with a whole-head axial gra-
diometer MEG (KIT, Kanazawa, Japan). The system has
160 axial gradiometers and recorded at 1000 Hz. An
online low-pass filter of 200 Hz and a high-pass filter of
0.03 Hz were used. We determined stimulus onsets with
a photodiode that detected light change when a number
stimulus came on the screen.We used FieldTrip (Oostenveld,
Fries, Maris, & Schoffelen, 2011) for all preprocessing
steps. Trials were epoched from−100 to 800 msec relative
to the onset of the stimulus and downsampled to 200 Hz
(5-msec resolution). Next, to the reduce dimensionality of
the data, we used principal component analysis and re-
tained the principal components that explained 99% of
the variance in the data for each participant. After a stan-
dard analysis pipeline by Grootswagers et al. (2016), we
performed no further preprocessing steps (e.g., channel
selection, artifact correction). This maintains the data in
the rawest possible form.

Pattern Classification

We used both a decoding analysis approach and a repre-
sentational similarity analysis (RSA; Kriegeskorte & Kievit,
2013; Kriegeskorte, 2011; Kriegeskorte, Mur, & Bandettini,
2008) to decode magnitude over time. In the following,
we address each approach in turn.

Decoding Analysis

For a decoding analysis, patterns of brain activity for each
participant are extracted across all MEG channels (com-
ponents after principal component analysis). A linear
discriminant classifier is trained to distinguish between
brain activity patterns evoked by all stimuli. Then, an in-
dependent subset of data from the same participant is
used to test whether the classifier can predict which
stimulus evoked a certain pattern of activity. The training
and testing steps are repeated at every time point. If the
prediction is above chance at a given time, we can infer
that the information the classifier had in the training phase
is relevant for the prediction at that time point.
We used random-effects Monte Carlo cluster statistics

corrected for multiple comparisons (as implemented by
CosmoMVPA toolbox; Oosterhof, Connolly, & Haxby,
2016; Maris & Oostenveld, 2007) to determine whether

the classifier performed above chance. Threshold free clus-
ter enhancement (TFCE; Smith & Nichols, 2009) was used
as a cluster-forming statistic. The TFCE statistic represents
the support from neighboring time points, allowing opti-
mal detection of sharp peaks as well as sustained weaker
effects. To correct for multiple comparisons, the Monte
Carlo technique used by CosmoMVPA performs a sign–
permutation test, swapping the signs of the decoding
results of all participants at random at each time point,
and recomputes the TFCE statistic. This is repeated
10,000 times to obtain a null distribution at each time
point. Then, the most extreme value of each null distri-
bution is taken to construct an overall null distribution
across the time series. The 95th percentile of this overall
null distribution is used when we compare the real de-
coding results and the null hypothesis providing a p value
(α = .05), which is corrected for multiple comparisons.

We ran two decoding analyses: within- and between-
format classifications. For the within-format classification,
we trained a classifier on magnitude (values 1–6) using a
subset of digit trials and then tested the classifier on
digit trials of independent data (chance level = 16.67%).
We repeated the same process for the dice stimuli. In the
32-fold cross-validation, each fold contained data corres-
ponding to 24 individual stimuli: Each magnitude (1–6)
was repeated four times, once in each of the four loca-
tions (top right, top left, bottom right, and bottom left).
Each of the folds served as independent test data once,
whereas all other folds were used for classifier training.
For the between-format analysis, we trained the classifier
on magnitude (values 1–6) in all digit trials and then tested
its performance on data from the dice trials and vice versa.

It is important to note that the within-format classifiers
can make use of magnitude and visual information to
predict which magnitude evoked a given pattern of brain
activity. To decrease the contribution of low-level visual
differences, we presented the stimuli in four different loca-
tions and reduced retinal overlap. Although this approach
increases the variability in the stimuli, there is still a con-
siderable degree of low-level feature similarity in the stim-
uli (e.g., total density, edges, orientation, curves). That
means, we cannot draw definite conclusions about mag-
nitude processing from the within-format analysis. In
comparison, the classifier in the between-format analysis
was trained on magnitude in one notation (e.g., digits)
and tested on the other notation (e.g., dice). That means,
the between-format classifier can only rely on magnitude
information, making this the strongest test of the hypoth-
esis that there is a representation of magnitude that does
not depend on the specific symbol of presentation.

RSA

Using RSA (Kriegeskorte & Kievit, 2013; Kriegeskorte,
2011; Kriegeskorte et al., 2008), we quantified the similar-
ity between brain activity patterns evoked by different
stimuli. First, we averaged the trials corresponding to
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the 48 unique trials (i.e., unique combinations of format,
location, and magnitude) and correlated these average
trials with one another. High correlations indicate that
the evoked activity is similar for a given pair of stimuli
and therefore harder to distinguish. We correlated all
possible stimulus pairs at each time point and thus ended
up with 180 representational dissimilarity matrices (RDMs;
see Figure 2). We then constructed five different model
RDMs, two conceptually based (Magnitude Model and
Label Model) and three visually based (Location Model,
Silhouette Model, and Format Model) models. We tested
whether these models could capture the differences in
the neural MEG RDMs by correlating these models to the
neural RDMs. In the same way as for the decoding analy-
sis, significance was tested with the Monte Carlo cluster
statistics corrected for multiple comparisons.

Our key model was the Magnitude Model (Figure 3A).
The Magnitude Model is based on the theory that mag-

nitudes are represented on a mental number line (Restle,
1970; Moyer & Landauer, 1967). The Magnitude Model
hence predicts that correlations of stimulus pairs that
are closer together in magnitude (e.g., 1 and 2) will be
higher than correlations of stimuli that are farther apart
(e.g., 1 and 5). In the Magnitude Model, location and
format are irrelevant; the prediction depends solely on
magnitude.
The Label Model (Figure 3B) served as a control model.

As participants were required to detect when a magnitude
repeats, it is plausible that correlations of the neural MEG
RDMs and the Magnitude Model RDM could be driven by
a verbal labeling strategy of participants. The Label Model
coded for such strategy by predicting that data evoked by
stimuli with the same verbal labels (e.g., 1 presented in
both numerical formats) would have a high correlation
whereas stimuli with different verbal labels (e.g., 1 pre-
sented as a digit in the top left and 2 presented as a dice

Figure 2. A depicts stimuli
seen in two separate trials.
B shows the recorded MEG
signal in response to these
stimuli. The signals from both
trials are then correlated at
each timing window (e.g., t1).
The correlation values of
each stimulus pair are then
inserted into the dissimilarity
matrix of the corresponding
timing window (C). This
process is repeated for all
stimulus pairs and every time
window to create a time series
of dissimilarity matrices (D).
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in the bottom right) would have a low correlation. This
model assumes that all number pairs that do not have
the same verbal label are equally hard to distinguish.
We constructed the visually based models to examine

what part of the correlations between the MEG RDMs can
be explained by inevitable low-level visual differences
between the stimuli. The Location Model (Figure 3C)
models in which of the four squares the stimulus was
presented. The Location model ignores magnitude and
format and predicts that correlations of stimuli presented
in the same location are higher than correlations of
stimuli that were presented in different locations. The
Silhouette Model (Figure 3D) compares visual overlap
between the stimuli ( Jaccard, 1901). The prediction for
the visual model is that the brain activity pattern evoked
by stimuli that have more pixel overlap also has a higher
correlation than patterns evoked by stimuli that do not
have as much visual overlap. Last, the Format Model
(Figure 3E) predicts that data of trials in which the numer-
ical format is the same (e.g., digits and digits) will cor-
relate stronger than data of trials with different numerical
formats (e.g., digits and dice). The Format Model ignores
location and magnitude and solely codes for format.

RESULTS

In the 1-back task, participants accurately detected 82.2%
(SD = 8.3%) of the repeat trials. To analyze the MEG
data, we ran a decoding analysis and RSA. We will first
present the results from the decoding analysis and then
the results from the RSA.

Decoding Analysis

For the within-format decoding, the classifier was trained
and tested on stimuli of the same numerical format
and can be driven by both visual and magnitude infor-
mation. The classifier was able to predict the numerical
value above chance for a cluster stretching from 120 to

740 msec relative to stimulus onset for dice and from
145 to 475 msec for digits. The within-dice classifier per-
formance is above chance for a longer period in com-
parison with the within-digit classifier performance
(Figure 4), presumably reflecting the stronger visual dif-
ferences present in the dice stimuli from 1–6. This means
that, when the classifier is trained on magnitudes of the
same numerical format, it is able to distinguish the
classes above chance for a substantial period of the time
series. Although stimuli were presented in different loca-
tions (right/ left, bottom/top), visual features such as

Figure 3. The model RDMs
(scaled). The top row shows the
conceptually based Magnitude
and Label Models (A and B,
respectively). The bottom
row shows the visually based
Location, Silhouette, and
Format Model (C–E). Each
square represents the predicted
dissimilarity between a stimulus
pair where 1 = highly
dissimilar and 0 = highly
similar.

Figure 4. Classification accuracy over time for within-format decoding
of dice (light blue) and digits (dark blue). Shading indicates standard
error around the mean. The dashed horizontal line shows chance
level, whereas the dotted vertical lines show the stimulus duration.
The colored dots indicate classification accuracy that is significantly
above chance ( p < .05, corrected for multiple comparisons). Under
the graph, we projected the sensor contributions (arbitrary units)
to the decoding results.
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shape will contribute to classifier performance. This is in
line with the finding that classifier performance for dice is
more accurate than that for digits: Dice have a more dis-
tinct visual pattern than digits, and more visual informa-
tion corresponds to a higher magnitude value,
confounding possible coding of magnitude with visual
differences.

In the between-format decoding, we trained a linear
discriminant classifier on the magnitude (values 1–6) of
one format (e.g., dice) and tested its performance on the
other format (e.g., dice) and vice versa. In comparison with
the within-format decoding, there are no reliable visual
differences between stimuli in the between-format de-
coding analysis that could predict above-chance classifi-
cation, making this a strong test of the hypothesis that a
shared representation of magnitude exists. The results
for the between-format decoding (Figure 5) show that
there is a cluster of classifier performance above chance
stretching from 410 to 435 msec when the classifier was
trained on dice and tested on digits. When the classifier
was trained on digits and tested on dice, it performs sig-
nificantly above chance in a cluster between 390 and
485 msec. As low-level features such as density do not vary
systematically for digits, classification is most likely driven
by magnitude demonstrating a shared representation of
magnitude accessed via digits and dice.

The significant between-format classification suggests
that there is overlap in the representation of digits and
dice. We now compare the relative time it takes to access
magnitude information from the two formats using a

time generalization technique. It is, for example, possible
that one format is processed faster than the other one,
and we have only captured a slight overlap between their
processing time windows with the between-format de-
coding. To test this possibility, we examined whether
the between-format decoding generalizes over time
(King & Dehaene, 2014; Carlson, Hogendoorn, Kanai,
Mesik, & Turret, 2011). We trained the classifier on trials
of one numerical format (e.g., digits) at each time point
of the time series and then tested the classifier on the
other numerical format (e.g., dice) at every possible time
point (Figure 6A). To test this difference statistically, we
conducted a random-effects Monte Carlo statistic that is
corrected for multiple comparisons to find which time
points in the time generalization matrix have classifica-
tion that is above chance. This allows us to see whether
a brain activity pattern that was observed for digits at a
given time point appeared in a similar way for dice at a
later or earlier time point (or vice versa). The results for
the time generalization analysis are summarized in Fig-
ure 6. The red line (Figure 6B) indicates the expected
between-format decoding if training and testing time
correspond perfectly (no temporal asynchrony in pro-
cessing digits and dice). However, visual inspection sug-
gests that, relative to this diagonal, there is a rightward
shift when we train on dice and test on digits and a left-
ward shift when we train on digits and test on dice. We
then calculated the distance between the significant time
points to the red diagonal reference line that indicates a
perfect one-to-one temporal mapping. The results show

Figure 5. Classification
accuracy over time for
between-format magnitude
decoding when the classifier
is trained on dice and tested
on digits (light blue) and
vice versa (dark blue). Shading
indicates standard error
around the mean. The dashed
horizontal line shows chance
level, whereas the dotted
vertical lines show the stimulus
duration. The colored dots
indicate classification accuracy
that is significantly above
chance ( p < .05, corrected
for multiple comparisons).
Under the graph, we projected
the sensor contributions
(arbitrary units) to the decoding
results.
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that the time generalization of the classifier performance
is shifted later by a median of 40 msec when we trained
on dice and tested on digits and 45 msec earlier when we
trained on digits and tested on dice (Figure 6C). This shows
that there is indeed a time-shift between the processing
speed of magnitudes presented as digits and dice: When
training the classifier on dice, we are able to generalize to
digits earlier and vice versa, suggesting that access to
magnitude information occurs earlier for digits than dice.
However, it is important to note that magnitudes accessed
via digits and dice must be similar as the between-format
classification is possible. From the decoding analysis, we
can hence conclude that there is a representational over-
lap between accessing magnitude from digits and dice but
that digits appear to be accessed slightly faster than dice.

RSA

RSA allows us to compare the overall similarity of the
brain activity corresponding to all of our stimuli instead
of only comparing stimulus pairs. We constructed five dif-

ferent models that we compare with the neural MEG
RDMs at every time point (Figure 3). This enables us to
model what type of information is most prevalent in the
signal at a given time. We first correlated the model
RDMs with the MEG RDMs at every time point using
Spearman’s rank correlation. We then used random-effects
Monte Carlo cluster statistics to quantify whether the cor-
relations were significantly above zero. The results of the
RSA are summarized in Figure 7. Stimulus onset and offset
are shown by the vertical lines. The black dotted line
shows the lower bound of the noise ceiling (Nili et al.,
2014), defined as the average correlation between indi-
vidual participant RDMs and the mean of all other par-
ticipant RDMs. The noise ceiling is an estimation of how
well the true model could perform given the noise in the
data (Nili et al., 2014). The noise ceiling highlights that
we can expect the maximum correlations between any
model RDM and the data to be relatively low just before
and after stimulus onset (i.e., more noise in the data)
and at the end of the time series. The noise ceiling peaks
at 150 msec after stimulus onset indicating that there is less

Figure 6. Time generalization
for between-format decoding.
Row A shows the classification
accuracy across training and
testing time when the classifier
is trained on dice and tested on
digits (left) and vice versa
(right). The diagonal line in Row
B indicates what exact temporal
mapping between training and
testing time would look like.
The white points are train- and
test-time combinations where
classification is significantly
above chance ( p < .05,
corrected for multiple
comparisons). Row C shows
the time-shift from the diagonal
of all significant time point
combinations.
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noise in the data at that time point in comparison with
earlier or later time points. As a consequence, models that
explain the data well in that time frame will have higher
correlations compared with models that perform well a
little later. This is clearly the case when we look at the
correlation between the MEG RDMs and the visually based
models (i.e., Location Model, Visual Model, and Format
Model). Visual stimulus characteristics that allow our visual
system to distinguish stimuli by features such as shape
and location are available relatively early (Ramkumar, Jas,
Pannasch, Hari, & Parkkonen, 2013; VanRullen & Thorpe,
2001), leading to high correlations between the visually
based model RDMs and the MEG RDMs early in the time
series. The correlation between the MEG RDMs and the
Location Model approaches the noise ceiling early and
stays significantly above chance for almost the whole
time series (significant cluster of time points from 55 to
800 msec). The Silhouette Model codes for the shape of
the stimuli by comparing pixel overlap. The Silhouette
Model correlates strongly with the MEG RDMs and peaks
at the same time as the Location Model at around 150msec
after stimulus onset. The Format Model that codes for
whether the magnitude was conveyed by a digit or die
correlates significantly above zero with the MEG RDM at
a cluster stretching from 145 to 800 msec after stimulus
onset. The correlation between the Format Model and
the MEG RDMs peaks later than the other two visually
based models at 255 msec after stimulus onset.

Our key Magnitude Model is an ordinal model predict-
ing that data evoked by stimuli with numerical values that
lie closer together (e.g., 1 and 2) should correlate more
than data evoked by stimuli with numerical values that
are farther apart (e.g., 1 and 6). The Magnitude Model
has a correlation larger than zero with the MEG RDMs
in a cluster stretching from 365 to 455 msec after stimu-
lus onset. This onset corresponds to the significant time
windows of the between-format decoding analysis. Note

that the correlation between Magnitude Model and MEG
data at the significant time points is much lower than for
the visually based models. This also matches the results
of the decoding analysis, which showed that the mainly,
visually driven within-format classification is more accu-
rate than the between-format decoding. There may be
several reasons for the absolute difference between visual
and magnitude effects. First, as the magnitude effect ap-
pears later than the visual effects, the correlation will always
be weaker because the data are much noisier by that
stage relative to the strong early effects (compare the noise
ceiling at these time points; Figure 7). Second, magnitude
effects are likely to be more strongly influenced by indi-
vidual differences than visual effects, as more processing
is required to access magnitude than the low-level early
sensory signals. Importantly, despite the absolute differ-
ences, our results suggest that magnitude is represented
independently of location and format.
One possible alternative interpretation of the correlation

of the MEG RDMs and the Magnitude Model is that par-
ticipants internally labeled the stimuli (e.g., “one” regard-
less of whether dice or digit was presented) to assist with
completion of the 1-back task. To test this, we also used a
Label Model coding for same versus different verbal labels.
Although the correlation between the MEG data and the
Label Model follows the shape of the Magnitude Model,
it does not reach significance at any point throughout
the time series. To test whether the Magnitude Model ex-
plains more of the variance than the Label Model, we tested
for differences between the correlations of the data with
the Magnitude and Label Models. Perhaps not surprisingly
given how close the models are to chance, the difference
between the Magnitude and Label Models did not reach
significance at any point in the time series. Therefore, we
cannot rule out a contribution of labeling in the correlation
of the Magnitude Model with the MEG data. What we have,
however, is evidence that the Magnitude Model explains a

Figure 7. Spearman’s rank
correlation of all model RDMs
and the MEG RDM over time.
The vertical dotted lines
indicate how long the stimulus
was on the screen. Each colored
line depicts the correlation
of a model RDM and the MEG
RDM. Shades around lines
depict standard errors. Colored
dots indicate correlations that
are significantly ( p < .05,
corrected for multiple
comparisons) above zero.
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significant portion of data variance, in the absence of such
evidence for the Label Model (which could reflect insuffi-
cient power or an actual lack of an effect).
The initial RSA shows that visual information is strongly

correlated with the data but that magnitude information
arises in the signal at a later point in the time series.
Looking more closely at the Magnitude Model, we see
that, in the beginning of the time series, there is a nega-
tive correlation between model and MEG data. This neg-
ative correlation coincides with the time point at which
the Location and Visual Models peak. That indicates that
the Location and Silhouette Models account for variance
for which the Magnitude Model cannot account. In the
next step, we regress out the variance explained by the
Location and Silhouette Models and look at the Magni-
tude Model again (Figure 8). This effectively removes
the visual “noise” from the Magnitude Model correlation.
Regressing out the Location and Silhouette Models im-
proves the Magnitude Model correlation early in the time

series. This improvement is more pronounced when the
Location Model is removed compared with the Silhouette
Model (reflecting the greater correlation between the
data and the Location Model compared with the Silhouette
Model). Importantly, there is a significant correlation
between the Magnitude Model and the MEG data regard-
less of whether any visual information is regressed out.

After regressing out the variance accounted for by the
Location Model, we looked at the Magnitude Model cor-
relation in more detail. The Magnitude Model predicts
data evoked by stimuli with numerical values close to
one another to be more similar than data evoked by stim-
uli with numerical values farther apart independent of
location and format. That means, the model contains both
within- and between-format correlations. Before drawing
conclusions about the representation of magnitude, then,
it is important to test whether the correlation of the
Magnitude Model and the MEG data could be driven by
only the within-format correlations, which we know are

Figure 8. Spearman’s rank
correlation of the Magnitude
Model RDM and the MEG
RDM over time when variance
explained by the Location and
Silhouette Models are regressed
out (blue and orange lines,
respectively) versus when
nothing is regressed (purple
line). Shading represents
standard errors. Colored dots
indicate correlations that are
significantly ( p < .05, corrected
for multiple comparisons)
above zero.

Figure 9. Spearman’s rank
correlation for different parts
of the Magnitude Model RDM
and the MEG RDM when
variance explained by the
Location Model is regressed
out. Shading represents
standard errors. Colored dots
indicate correlations that
are significantly ( p < .05,
corrected for multiple
comparisons) above zero.
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influenced by visual features. In the next step, we there-
fore looked at the Magnitude Model separated into three
parts: within-digits, within-dice, and between-format cor-
relations. The results (Figure 9) show that there is a sig-
nificant correlation for all three.

Supporting the results of the decoding analysis, the
within-dice part of the Magnitude Model has the highest
correlation with significant clusters stretching over most
of the time series (140–735 msec relative to stimulus
onset). The within-digits part of the Magnitude Model
also significantly correlates with the data at several clus-
ters throughout the time series (225–420 msec relative to
stimulus onset). Again, it is important to note that most
of these correlations are due to visual features and it is
not possible to determine any effect of magnitude infor-
mation alone from these within-format contrasts. In com-
parison, the between-format part of the Magnitude Model
only predicts similarity between data evoked by a certain
magnitude in one format (e.g., digit 3) and the same
magnitude in the other format (e.g., die 3), thus contain-
ing similarities based on magnitude only. This between-
format part of the Magnitude Model correlates significantly
with the data at a cluster stretching from 360 to 450 msec
relative to stimulus onset. This time window is consistent
with the results of the between-format decoding analysis.
Thus, these results suggest that magnitude is represented
in a similar way when accessed via digits and dice.

DISCUSSION

In this study, we examine whether there is a common
representation of magnitude regardless of symbolic nota-
tion (digits and dice). Consistent across two different
analysis methods, our results suggest that there is a
shared brain representation of magnitude for these sym-
bolic formats. We also see a time difference in the access
to this magnitude representation, with digits being pro-
cessed slightly earlier than dice. In addition, we showed
that activation patterns evoked by stimuli closer in numer-
ical value are more similar than of stimuli farther apart,
providing neural underpinnings for an ordinal component
of magnitude representation.

Previous studies examining magnitude representation
have mostly focused on whether magnitudes presented
in different numerical formats are processed in the same
brain area (e.g., Eger et al., 2003; Naccache & Dehaene,
2001; Pinel et al., 2001). In the current study, we used a
time-series decoding approach to investigate the tem-
poral unfolding of magnitude processing. Our results
show that digits and dice are processed in a sufficiently
similar way over time to allow for cross-generalization
and that digits and dice, which represent closer magni-
tudes, are more similar in neural activity than those that
are farther apart. This is in line with behavioral findings
such as the numerical distance effect (Moyer & Landauer,
1967), which has been shown to occur independently of
numerical format (Schwarz & Ischebeck, 2000).

In addition to similarities in magnitude representation
of digit and dice stimuli over time, our results show that
there is a temporal shift when comparing the processing
of magnitude in these formats. Magnitude from digit
stimuli seems to be accessed earlier than for dice. This
corresponds to previous behavioral findings by Buckley
and Gillman (1974) showing that RTs to digits are faster
than those to dots in a regular, known composition. In
previous EEG studies, digits have also been shown to be
processed slightly earlier than number words (Dehaene,
1996) and dots in random configurations (Temple &
Posner, 1998). Similarly, the results of the time-series de-
coding analysis suggest that magnitude information from
digits is accessed slightly earlier than in dice.
Evidence for a similar pattern in processing of mag-

nitude across formats has been taken as evidence for ab-
stract magnitude representation (see, e.g., Cohen Kadosh
& Walsh, 2009). In the context of numerical cognition, “ab-
stract representation” means that magnitude is accessed
via a transformation of numerical stimuli to a format-
independent, continuous quantity (Dehaene, Dehaene-
Lambertz, & Cohen, 1998). This is one possible interpretation
of our findings: It may be that digits and dice are both
converted into a completely abstract representation of
magnitude. The delay between accessing magnitude for
dice stimuli in comparison with digits could then be attrib-
uted to a difference in conversion speed. It may be that it is
faster to access abstract magnitude from digits than it is
from dice, presumably reflecting the relative frequency
and familiarity of the stimuli. Alternatively, numerical for-
mats could activate magnitude information in a shared
but not necessarily abstract format. The delay for accessing
magnitude information when presented with dice would
then be attributed to the time it takes to convert the dice
into the shared representation, potentially of digits. Dis-
entangling these two alternatives is difficult. The current
data show that there is sufficient similarity in processing
of digits and dice to allow for cross-generalization, but we
cannot tell whether this is a different representation from
either notation directly. We are hence cautious with the
term “abstract” here and interpret the current data as evi-
dence for a shared representation of magnitude for digit
and dice stimuli. This interpretation allows for both ex-
planations, an abstract representation, or a representation
in one numerical format only.
We have to be cautious when interpreting our data as

it is hard to infer the source of the decodable signal
(Coltheart, 2006; Henson, 2005). Our results show that it
is possible to representmagnitude in a format-independent
fashion, but we cannot be certain whether this format-
independent representation is necessary for normal num-
ber processing (Seron & Fias, 2006). It is, for example,
possible that the task we asked participants to do resulted
in the format-independent magnitude effect. Participants
completed a 1-back task on magnitude, which required
them to think of the stimuli as representing magnitude.
In future studies, it may be interesting to see whether
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magnitude can be decoded even if the task is completely
orthogonal to magnitude processing, demonstrating
whether attention to magnitude is a crucial aspect for
such apparent shared representation.
Another caveat relates to the potential for covert

semantic labeling to contribute to the magnitude effects.
The Label Model was designed to account for task effects
related to this. There was no time point at which this
model correlated significantly with the data (Figure 7),
but this is a null effect, and so we must be cautious in
our inference. As there was no significant difference
between the correlations of the data with the Magnitude
Model and the Label Model, we cannot rule out a con-
tribution of semantic labeling. However, the observation
that the Magnitude Model provided a significant account
of the data suggests that the ordinal structure in the
model provided explanatory power, whereas we have
no such clear information regarding the Label Model.
With our analysis, we are able to distinguish purely

visual from higher-cognitive magnitude effects. The visual
effects were much stronger and easier to decode than
anything related to magnitude across our analyses. This
is not surprising given the reliability of low-level visual
signals, the time-locked nature of such signals to the
stimulus, and the greater variability in individual pro-
cessing times (even on a trial-to-trial basis) of higher-level
cognitive functions. Looking at these visual effects, we
also showed that dice produce a much stronger and
clearer visual signal than digits. This again is not surprising
given the visual dissimilarity within the nonsymbolic stim-
uli such as dice: Total luminance, for example, is lower for
larger magnitudes than for smaller ones. In comparison,
for digits, the amount of visual information is relatively
consistent across stimuli. This corresponds to results
from previous fMRI MVPA studies consistently showing
that nonsymbolic stimuli (e.g., dots) resulted in higher-
magnitude decoding accuracy across the whole brain
(Bulthé et al., 2014) and in the parietal lobes (Damarla
& Just, 2013; Eger et al., 2009) than symbolic stimuli
(i.e., digits). Bulthé et al. (2014) and Eger et al. (2009)
controlled for some low-level visual features of the non-
symbolic displays such as individual dot size, space be-
tween dots, total luminance, and total area of the stimuli.
Although controlling for these features limits the problem
of visual dissimilarity across stimulus classes, some visual
differences remain. For example, symbolic stimuli always
consist of one item on the screen, whereas nonsymbolic
stimuli consist of multiple items. These visual differences
between stimulus classes may have led to higher decoding
accuracy for dice than for digits in our study and previous
studies. Our main results cannot be driven by such inevita-
ble visual differences, as the key comparisons we make are
based on a comparison across two different notations.
To our knowledge, the current study is the first to take

a time-series decoding approach in the field of numerical
cognition. Our results show that current analysis tools of
MEG decoding are sensitive enough to distinguish be-

tween magnitudes. These methods offer many future
avenues for the field of numerical cognition as well as
providing proof-of-concept that the methods can be ap-
plied to higher-level cognitive processes.

In summary, the results of the current study suggest
that there is a shared magnitude representation regard-
less of symbolic notation. We also showed that there is
a time-shift in processing magnitude of different symbolic
numerical formats, with digits being accessed slightly
earlier than dice. Although within-format classification is
driven strongly by visual effects, we found that magnitude
information across numerical formats can be decoded at
a later stage in processing. By showing that magnitude is
decodable, our study highlights that applying decoding
to time series data can be a useful approach for the field
of numerical cognition.
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Note

1. Note, for research on the distinction between magnitude
processing when accessed via symbolic and nonsymbolic nota-
tions, see, for example, Bulthé, De Smedt, and Op de Beeck
(2014); Libertus, Woldorff, and Brannon (2007); Piazza, Pinel,
Le Bihan, and Dehaene (2007); and Fias, Lammertyn, Reynvoet,
Dupont, and Orban (2003).
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