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The ability to rapidly and accurately recognize complex objects is a crucial function of the human visual system. To recognize
an object, we need to bind incoming visual features, such as color and form, together into cohesive neural representations
and integrate these with our preexisting knowledge about the world. For some objects, typical color is a central feature for
recognition; for example, a banana is typically yellow. Here, we applied multivariate pattern analysis on time-resolved neuroi-
maging (MEG) data to examine how object-color knowledge affects emerging object representations over time. Our results
from 20 participants (11 female) show that the typicality of object-color combinations influences object representations,
although not at the initial stages of object and color processing. We find evidence that color decoding peaks later for atypical
object-color combinations compared with typical object-color combinations, illustrating the interplay between processing
incoming object features and stored object knowledge. Together, these results provide new insights into the integration of
incoming visual information with existing conceptual object knowledge.
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Significance Statement

To recognize objects, we have to be able to bind object features, such as color and shape, into one coherent representation
and compare it with stored object knowledge. The MEG data presented here provide novel insights about the integration of
incoming visual information with our knowledge about the world. Using color as a model to understand the interaction
between seeing and knowing, we show that there is a unique pattern of brain activity for congruently colored objects (e.g., a
yellow banana) relative to incongruently colored objects (e.g., a red banana). This effect of object-color knowledge only occurs
after single object features are processed, demonstrating that conceptual knowledge is accessed relatively late in the visual
processing hierarchy.

Introduction
Successful object recognition depends critically on comparing
incoming perceptual information with existing internal represen-
tations (Albright, 2012; Clarke and Tyler, 2015). A central feature
of many objects is color, which can be a highly informative cue
in visual object processing (Rosenthal et al., 2018). Although we
know a lot about color perception itself, comparatively less is
known about how object-color knowledge interacts with color
perception and object processing. Here, we measure brain activ-
ity with MEG and apply multivariate pattern analyses (MVPA)
to test how stored object-color knowledge influences emerging
object representations over time.

Color plays a critical role in visual processing by facilitating
scene and object recognition (Gegenfurtner and Rieger, 2000;
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Tanaka et al., 2001), and by giving an indication of whether an
object is relevant for behavior (Conway, 2018; Rosenthal et al.,
2018). Objects that include color as a strong defining feature
have been shown to activate representations of associated colors
(Hansen et al., 2006; Olkkonen et al., 2008; Witzel et al., 2011;
Bannert and Bartels, 2013; Vandenbroucke et al., 2016;
Teichmann et al., 2019), leading to slower recognition when
there is conflicting color information (e.g., a red banana)
(Tanaka and Presnell, 1999; Nagai and Yokosawa, 2003; for a
meta-analysis, see Bramão et al., 2010). Neuroimaging studies on
humans and nonhuman primates have shown that there are sev-
eral color-selective regions along the visual ventral pathway
(Zeki and Marini, 1998; Seymour et al., 2010, 2016; Lafer-Sousa
and Conway, 2013; Lafer-Sousa et al., 2016). While the more
posterior color-selective regions do not show a shape bias, the
anterior color-selective regions do (Lafer-Sousa et al., 2016), sup-
porting suggestions that color knowledge is represented in
regions associated with higher-level visual processing (Tanaka et
al., 2001; Simmons et al., 2007). A candidate region for the inte-
gration of stored knowledge and incoming visual information is
the anterior temporal lobe (ATL) (Patterson et al., 2007; Chiou
et al., 2014; Papinutto et al., 2016). In one study (Coutanche and
Thompson-Schill, 2015), for example, brain activation patterns
evoked by recalling a known object’s color and its shape could be
distinguished in a subset of brain areas that have been associated
with perceiving those features, namely, V4 and lateral occipital
cortex, respectively. In contrast, recalling an object’s particular
conjunction of color and shape could only be distinguished in
the ATL, suggesting that the ATL processes conceptual object
representations.

Time-resolved data measured with EEG or MEG can help us
understand how concetual level processing interacts dynamically
with perception. Previous EEG studies have examined the tem-
poral dynamics of object-color knowledge as an index of the
integration of incoming visual information and prior knowledge
(Proverbio et al., 2004; Lu et al., 2010; Lloyd-Jones et al., 2012).
For example, Lloyd-Jones et al. (2012) showed that shape infor-
mation modulates neural responses at ;170 ms (component
N1), the combination of shape and color affected the signal at
225ms (component P2), and the typicality of object-color pair-
ing modulated components ;225 and 350ms after stimulus
onset (P2 and P3). These findings suggest that the initial stages
of object recognition may be driven by shape, with the interac-
tions with object-color knowledge coming into play at a much
later stage, perhaps as late as during response selection.

Using multivariate methods for time-resolved neuroimaging
data, we can move beyond averaged measures (i.e., components)
to infer what type of information is contained in the neural signal
on a trial-to-trial basis. In the present study, we used MVPA to
determine the time point at which neural activity evoked by con-
gruently (e.g., yellow banana) and incongruently (e.g., red banana)
colored objects differs, which indicates when stored knowledge is
integrated with incoming visual information. Furthermore, we
examined whether existing knowledge about an object’s color
influences perceptual processing of surface color and object iden-
tity. Overall, using color as a model, our findings elucidate the
time course of interactions between incoming visual information
and prior knowledge in the brain.

Materials and Methods
Participants
Twenty healthy volunteers (11 female, mean age = 28.9 years, SD=
6.9 years, 1 left-handed) participated in the study. All participants

reported accurate color vision and had normal or corrected-to-normal
visual acuity. Participants gave informed consent before the experiment
started and were financially compensated. The study was approved by
the Macquarie University Human Research Ethics Committee.

Stimuli
We identified five real-world objects that previous studies have shown to
be strongly associated with each of four different colors (red, green, or-
ange, and yellow; see Fig. 1A) (Joseph, 1997; Tanaka and Presnell, 1999;
Naor-Raz et al., 2003; Therriault et al., 2009; Lloyd-Jones et al., 2012;
Bannert and Bartels, 2013). Each color category had one manmade
object (e.g., fire hydrant), one living object (e.g., ladybird), and three
fruits or vegetables (e.g., strawberry, tomato, cherry). We sourced two
exemplar images for each object class, resulting in 10 images for each
color, 40 individual images in total. We then created incongruently col-
ored objects by swapping the colors (e.g., yellow strawberry, red banana).
For both congruent and incongruent stimuli, we did not use the native
colors from the images themselves, but instead overlaid prespecified
hues on desaturated (grayscale) images that were equated for luminance
using the SHINE toolbox (Willenbockel et al., 2010). A grayscale image
overlaid with its canonically associated color (e.g., yellow hue applied to
grayscale banana) resulted in a congruent object; a grayscale image over-
laid with a color different from its canonically associated color (e.g., red
hue applied to grayscale banana) resulted in an incongruent object.
Every congruent object exemplar had a single color-matched incongru-
ent partner. For example, we used a specific shade of red and added it to
the grayscale images of the strawberry to make the congruent strawberry
and overlaid it onto the lemon to make the incongruent lemon. We then
took a specific shade of yellow and overlaid it on the lemons to make the
congruent lemon exemplar, and onto the strawberry to make the incon-
gruent strawberry exemplar. That means, overall, we have the identical
objects and colors in the congruent and the incongruent condition, a fac-
tor that is crucial to ensure our results cannot be explained by features
other than color congruency. The only difference between these key con-
ditions is that the color-object combination is either typical (congruent)
or atypical (incongruent).

This procedure resulted in 40 congruent objects (10 of each color)
and 40 incongruent objects (10 of each color; Fig. 1A). We added two
additional stimulus types to this set: the full set of 40 grayscale images,
and a set of 10 different angular abstract shapes, colored in each of the
four hues (Fig. 1A). As is clear in Figure 1A, the colors of the abstract
shapes appear brighter than the colors of the objects; this is because the
latter were made by overlaying hue on grayscale, whereas the shapes
were simply colored. As our principle goal was to ensure that the con-
gruent objects appeared to have their typical coloring, we did not match
the overall luminance of the colored stimuli. For example, if we equated
the red of a cherry with the yellow of a lemon, neither object would look
typically colored. Thus, each specific color pair is not equated for lumi-
nance; however, we have the same colors across different conditions
(Fig. 1B).

All stimuli were presented at a distance of 114 cm. To add visual vari-
ability, which reduces the low-level featural overlap between the images,
we varied the image size from trial to trial by 2 degrees of visual angle.
The range of visual angles was therefore between;4.3 and 6.3 degrees.

Experimental design and statistical analysis
Experimental tasks. In the main task (Fig. 1C), participants com-

pleted eight blocks of 800 stimulus presentations each. Each individual
stimulus appeared 40 times over the course of the experiment. Each
stimulus was presented centrally for 450ms with a black fixation dot on
top of it. To keep participants attentive, after every 80 stimulus presenta-
tions, a target image was presented until a response was given indicating
whether this stimulus had appeared in the last 80 stimulus presentations
or not (50% present vs absent). The different conditions (congruent,
incongruent, grayscale, abstract shape) were randomly intermingled
throughout each block, and the target was randomly selected each time.
On average, participants performed with 90% (SD=5.4%) accuracy.

After completing the main blocks, we collected behavioral object-
naming data to test for a behavioral congruency effect with our stimuli.

6780 • J. Neurosci., August 26, 2020 • 40(35):6779–6789 Teichmann et al. · Color Knowledge and Object Representations



On the screen, participants saw each of the objects again (congruent,
incongruent, or grayscale) in a random order and were asked to name
the objects as quickly as possible. As soon as voice onset was detected,
the stimulus disappeared. We marked stimulus-presentation times with
a photodiode and recorded voice onset with a microphone. Seventeen
participants completed three blocks of this reaction time task, one partic-
ipant completed two blocks; and for 2 participants, we could not record
any reaction times. Each block contained all congruent, incongruent,
and grayscale objects presented once.

Naming reaction times were defined as the difference between
stimulus onset and voice onset. Trials containing naming errors and
microphone errors were not analyzed. We calculated the median
naming time for each exemplar for each person and then averaged
the naming times for each of the congruent, incongruent, and gray-
scale conditions.

MEG data acquisition. While participants completed the main task
of the experiment, neuromagnetic recordings were conducted with a
whole-head axial gradiometer MEG (KIT), containing 160 axial gradi-
ometers. We recorded the MEG signal with a 1000Hz frequency. An
online low-pass filter of 200Hz and a high-pass filter of 0.03Hz were
used. All stimuli were projected on a translucent screen mounted on the
ceiling of the magnetically shielded room. Stimuli were presented using
MATLAB with Psychtoolbox extension (Brainard, 1997; Pelli, 1997;
Kleiner et al., 2007). Parallel port triggers and the signal of a photodiode
were used to mark the beginning and end of each trial. A Bimanual 4-
Button Fiber Optic Response Pad (Current Designs) was used to record
the responses.

Before entering the magnetically shielded room for MEG recordings,
an elastic cap with five marker coils was placed on the participant’s head.
We recorded head shape with a Polhemus Fastrak digitiser pen and used

A

B C

Tim
e

Figure 1. A, All stimuli used in this experiment. The same objects were used in the congruent, incongruent, and grayscale conditions. There were two exemplars of each object. Colors in
the congruent and incongruent condition were matched. The abstract shapes were identical across color categories. B, The mean chromaticity coordinates for the 2° observer under D65 illumi-
nation for each color category (top) as well as the mean lightness of all colored stimuli used in this experiment (bottom). The colors were transformed into CIELUV space using the OptProp tool-
box (Wagberg, 2020). C, An example sequence of the main task. Participants viewed each object for 450 ms. After each sequence, one object was displayed and participants had to indicate
whether they had seen this object in the previous sequence or not.

Teichmann et al. · Color Knowledge and Object Representations J. Neurosci., August 26, 2020 • 40(35):6779–6789 • 6781



the marker coils to measure the head position within the magnetically
shielded room at the start of the experiment, halfway through and at the
end.

MEG data analysis: preprocessing. FieldTrip (Oostenveld et al., 2011)
was used to preprocess the MEG data. The data were downsampled to
200Hz and then epoched from �100 to 500ms relative to stimulus
onset. We did not conduct any further preprocessing steps (filtering,
channel selection, trial averaging, etc.) to keep the data in its rawest pos-
sible form.

MEG data analysis: decoding analyses. For all our decoding analyses,
patterns of brain activity were extracted across all 160 MEG sensors at
every time point, for each participant separately. We used a regularized
linear discriminant analysis classifier, which was trained to distinguish
the conditions of interest across the 160-dimensional space. We then
used independent test data to assess whether the classifier could predict
the condition above chance in the new data. We conducted training and
testing at every time point and tested for significance using random
effects Monte Carlo cluster statistics with Threshold Free Cluster
Enhancement (TFCE, Smith and Nichols, 2009), corrected for multiple
comparisons using the max statistic across time points (Maris and
Oostenveld, 2007). Our aim was not to achieve the highest possible decod-
ing accuracy, but rather to test whether the classifier could predict the con-
ditions above chance at any of the time points (i.e., “classification for
interpretation”) (Hebart and Baker, 2018). Therefore, we followed a mini-
mal preprocessing pipeline and performed our analyses on a single-trial ba-
sis. Classification accuracy above chance indicates that the MEG data
contain information that is different for the categories. We used the
CoSMoMVPA toolbox (Oosterhof et al., 2016) to conduct all our analyses.

We ran several decoding analyses, which can be divided in three
broad themes. First, we tested when we can differentiate between trials
where congruently and incongruently colored objects were presented.
This gives us an indication of the time course of the integration of visual
object representations and stored conceptual knowledge. Second, we
examined single-feature processing focusing on color processing and
how the typicality of object-color combinations influences color process-
ing over time. Third, we looked at another single feature, shape, and
tested whether object-color combinations influence shape processing
over time.

For the congruency analysis (see Fig. 2A), we tested whether acti-
vation patterns evoked by congruently colored objects (e.g., red
strawberry) differ from activation patterns evoked by incongruently
colored objects (e.g., yellow strawberry). Any differential response
that depends on whether a color is typical or atypical for an object (a
congruency effect) requires the perceived shape and color to be
bound and compared with a conceptual object representation acti-
vated from memory. We trained the classifier on all congruent and
incongruent trials, except for trials corresponding to one pair of
matched exemplars (e.g., all instances of congruent and incongruent
strawberries and congruent and incongruent bananas). We then
tested the classifier using only the left-out exemplar pairs. We
repeated this process until each matched exemplar pair had been left
out (i.e., used as test data) once. Leaving an exemplar pair out
ensures that there are identical objects and colors for both classes
(congruent and incongruent) in both the training and the testing
set, and that the stimuli of the test set have different shape charac-
teristics than any of the training objects. As such, the only distin-
guishing feature between the conditions is the conjunction of shape
and color features, which defines congruency. This allows us to
compare directly whether (and at which time point) stored object
representations interacts with incoming object-color information.

Next, we focused on the time course of color processing. First, we
examined the time course of color processing independent of congru-
ency (see Fig. 3A). For this analysis, we trained the classifier on distin-
guishing between the four different color categories of the abstract
shapes and tested its performance on an independent set of abstract
shape trials. We always left one block out for the cross-validation (eight-
fold). The results of this analysis give an indication about the emergence
of when the representations differ between different surface colors, but
as we did not control the colors to be equal in luminance or have the

same hue difference between each pair, this is not a pure chromatic mea-
sure. We did not control luminance because we used these colors to cre-
ate our colored objects, which needed to look as realistic as possible.
Thus, the color decoding analysis includes large and small differences in
hue and in luminance between the categories. To look at the differences
between each color pair, we also present confusion matrices showing the
frequencies of the predicted color categories at peak decoding.

Our second color-processing analysis was to examine whether the
conjunction of object and color influenced color processing (see Fig.
4A). Perceiving a strongly associated object in the context of viewing a
certain color might lead to a more stable representation of that color in
the MEG signal. For example, if we see a yellow banana, the banana
shape may facilitate a representation of the color yellow earlier than if
we see a yellow strawberry. To assess this possibility, we trained the clas-
sifier to distinguish between the surface colors of the abstract shapes
(i.e., red, orange, yellow, green; chance: 25%). We then tested how well
the classifier could predict the color of the congruent and incongruent
objects. Training the classifier on the same abstract shapes across color
categories makes it impossible that a certain shape-color combination
drives an effect, as the only distinguishing feature between the abstract
shapes is color. This analysis allows us to compare whether the typicality
of color-form combinations has an effect on color processing.

In our final set of analyses, we examined the time course of shape
processing. First, to assess the time course of shape processing independ-
ent of congruency, we trained a classifier to distinguish the five different
abstract shapes in a pairwise fashion (see Fig. 5A). We always used one
independent block of abstract shape trials to test the classifier perform-
ance (eightfold cross-validation). The results of this analysis indicate
when information about different shapes is present in the neural signal,
independent of other object features (e.g., color) or congruency. Second,
we tested whether the conjunction of object and color has an effect on
object decoding (see Fig. 6A). If object color influences early perceptual
processes, we might see a facilitation for decoding objects when they are
colored congruently or interference when the objects are colored incon-
gruently. We used the grayscale object trials to train the classifier to dis-
tinguish between all of the objects. The stimulus set contained two
exemplars of each item (e.g., strawberry 1 and strawberry 2). We used
different exemplars for the training and testing set to minimize the
effects of low-level visual features; however, given that there are major
differences in object shapes and edges, we can still expect to see strong
differences between the objects. The classifier was trained on one exem-
plar of all of the grayscale trials. We then tested the classifier’s perform-
ance on the congruent and incongruent object trials using the exemplars
the classifier did not train on. We then swapped the exemplars used for
training and testing set until every combination had been used in the
testing set. Essentially, this classifier is trained to predict which object
was presented to the participant (e.g., was it a strawberry or a frog?) and
we are testing whether there is a difference depending on whether the
object is congruently or incongruently colored.

Statistical inferences. In all our analyses, we used random-effects
Monte-Carlo cluster statistic using threshold-free cluster enhancement
(TFCE, Smith and Nichols, 2009) as implemented in the CoSMoMVPA
toolbox to see whether the classifier could predict the condition of inter-
est above chance. The TFCE statistic represents the support from neigh-
boring time points, thus allowing for detection of sharp peaks and
sustained small effects over time. We used a permutation test, swapping
labels of complete trials, and reran the decoding analysis on the data
with the shuffled labels 100 times per participant to create subject-level
null distributions. We then used Monte-Carlo sampling to create a
group-level null distribution consisting of 10,000 shuffled label permuta-
tions for the time-resolved decoding, and 1000 for the time-generaliza-
tion analyses (to reduce computation time). The null distributions were
then transformed into TFCE statistics. To correct for multiple compari-
sons, the maximum TFCE values across time in each of the null distribu-
tions was selected. We then transformed the true decoding values to
TFCE statistics. To assess whether the true TFCE value at each time
point is significantly above chance, we compared it with the 95th percen-
tile of the corrected null distribution. Selecting the maximum TFCE
value provides a conservative threshold for determining whether the
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observed decoding accuracy is above chance, corrected for multiple
comparisons.

To assess at which time point the decoding accuracy peaks, we boot-
strapped the participants’ decoding accuracies for each analysis 10,000
times and generated 95% CIs for peak decoding. For the analyses in
which we are comparing color and exemplar decoding for congruent
and incongruent trials, we also compared the above-chance decoding
durations. To test for the duration of above-chance decoding, we boot-
strapped the data (10,000 times) and ran our statistics. At each iteration,
we then looked for the longest period in which we have above-chance
decoding in consecutive time points. We plotted the bootstrapped
decoding durations and calculated medians to compare the distributions
for the congruent and the incongruent condition.

Results
Behavioral results
We first present the data from our behavioral object-naming task
to confirm that our stimuli induce a congruency effect on object
naming times. All incorrect responses and microphone errors
were excluded from the analysis (on average across participants:
10.1%). We then calculated the median reaction time for naming
each stimulus. If a participant named a specific stimulus incor-
rectly across trials (e.g., incongruently colored strawberry was
always named incorrectly), we removed this stimulus completely
to ensure that the reaction times in one condition were not
skewed. We ran a repeated-measures ANOVA to compare the
naming times for the different conditions in the behavioral object
naming task using JASP (JASP Team, 2020). Naming times were
significantly different between the conditions (F(2,34) = 12.8;
p, 0.001). Bonferroni-corrected post hoc comparisons show
that participants were faster to name the congruently colored
(701ms) than the incongruently colored (750ms) objects (pbonf ,
0.001; 95% CI for mean difference [23.8, 72.8]). It took

participants on average 717ms to
name the grayscale objects, which
was significantly faster than naming
the incongruently colored objects
(pbonf = 0.007; 95% CI for mean dif-
ference [7.8, 56.8]) but not signifi-
cantly slower than naming the
congruently colored objects (pbonf =
0.33.; 95% CI for mean difference
[�40.5, 8.5]). These results suggest
that the objects we used here do
indeed have associations with spe-
cific canonical colors, and we replicate
that these objects are consistently associ-
ated with a particular color (Joseph,
1997; Tanaka and Presnell, 1999; Naor-
Raz et al., 2003; Therriault et al., 2009;
Lloyd-Jones et al., 2012; Bannert and
Bartels, 2013).

In the main task, participants were
asked to indicate every 80 trials
whether they had seen a certain target
object or not. The aim of this task was
to keep participants motivated and
attentive throughout the training ses-
sion. On average, participants reported
whether the targets were present or
absent with 90% accuracy (SD= 5%,
range: 81.25%–100%).

MEG results
The aim of our decoding analyses was
to examine the interaction between

object-color knowledge and object representations. First, we
tested for a difference in the brain activation pattern for con-
gruently and incongruently colored objects. The results show dis-
tinct patterns of neural activity for congruent compared with
incongruent objects in a cluster of consecutive time points
stretching from 250 to 325ms after stimulus onset, demonstrat-
ing that brain activity is modulated by color congruency in this
time window (Fig. 2B). Thus, binding of color and form must
have occurred by ;250 ms, and stored object-color knowledge is
integrated with incoming information. An exploratory searchlight
(Kaiser et al., 2016; Collins et al., 2018; Carlson et al., 2019) across
small clusters (9 at a time) of MEG sensors suggests that this effect
is driven a range of frontal, temporal, and parietal sensor clusters
(Fig. 2C).

To examine the time course of color processing separately
from congruency, we decoded the surface colors of the abstract
shapes (Fig. 3A). Consistent with earlier results (Teichmann et
al., 2019), we found that color can be decoded above chance
from the abstract shape trials in a cluster stretching from 70 to
350ms (Fig. 3B). Looking at data from an exploratory sensor
searchlight analysis across small clusters of sensors shows that
color information at peak decoding is mainly distinguishable
from occipital and parietal sensors. To examine whether all col-
ors could be dissociated equally well, we also looked at confusion
matrices displaying how frequently each color category was pre-
dicted for each color (Fig. 3D). The results show that, at the
decoding peak (140ms), red and green are most easily distin-
guishable and that the prediction errors are not equally distrib-
uted: Red trials are more frequently misclassified as being orange
than green or yellow, and green trials are more frequently mis-
classified as being yellow than orange or red. This indicates that

Figure 2. Cross-validation and results of the congruency analysis contrasting trials from the congruent and incongruent condi-
tions. A, The leave-one-matched-exemplar-out cross-validation approach for a single fold for the congruency decoding analysis. The
classifier was trained on the trials shown on the left and tested on the trials on the right, ensuring that the classifier is not tested
on the exemplars on which it trained. This limits the effect features other than congruency can have on classifier performance. B,
The classification accuracy over time. Shading represents the SE across participants. Black dashed line indicates chance level (50%,
congruent vs incongruent). Filled dots indicate significant time points, corrected for multiple comparisons. Horizontal bar above the
curve represents the 95% CI of the peak. C, An exploratory sensor searchlight analysis in which we run the same analysis across
small clusters of sensors. Colors represent the decoding accuracy for each sensor cluster averaged over the 95% CI of the peak time
points.
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colors that are more similar evoke a
more similar pattern of activation
than colors that are dissimilar (Fig.
3E).

To assess whether congruency
influences color processing, we
trained a classifier to distinguish
between the colors in the abstract
shape condition and then tested it
on the congruent and incongruent
trials separately (Fig. 4A). Color
can be successfully classified in a
cluster stretching from 75 to
125ms for the congruent condition
and in a cluster stretching from 75
to 185ms for the incongruent trials
(Fig. 4B). These results suggest that
there may be a difference in the
way color information is processed
depending on the congruency of
the image, specifically evident in
the decoding peaks and decoding
duration. To test whether there is a
true difference in decoding time
courses, we bootstrapped the data
and looked at the peak decoding
and the longest consecutive streak
of above-chance decoding. Compa-
ring the peak decoding times for
the congruent and the incongruent
condition, we find that they are dif-
ferent from each other (Fig. 4C,
top). However, comparing the CIs of the decoding durations,
we find no consistent differences between the congruent and
the incongruent condition (Fig. 4C, bottom). This could be
because onsets and offsets in above-chance decoding are
affected by signal strength and thresholds (compare
Grootswagers et al., 2017). The peak differences are a more ro-
bust measure and suggest that stronger color decoding occurs
later in the incongruent compared with congruent condition.
To get a complete picture of how these signals evolve over
time, we used time-generalization matrices (Fig. 4D). To cre-
ate time-generalization matrices, we trained the classifier on
each time point of the training dataset and then tested it on all
time points of the test set. The diagonal of these matrices cor-
responds to the standard time-resolved decoding results (e.g.,
training at 100ms and testing at 100ms). A decodable off-the-
diagonal effect reflects a temporal asynchrony in information
processing in the training and testing set (compare Carlson et
al., 2011; King and Dehaene, 2014). Our data show that color
category was decodable from both conditions early on (;70
ms). In the incongruent condition, the activation associated
with color seems to be sustained longer than for the congruent
condition (Fig. 4D), but for both, decoding above chance
occurs mainly along the diagonal. This suggests that the initial
pattern of activation for color signals occurs at the same time
but that the signals associated with color are prolonged when
object-color combinations are unusual relative to when they
are typical.

In an exploratory color analysis, we also examined which
errors the classifier made when predicting the color of the incon-
gruently colored objects. We looked at whether the implied

object color is predicted more often than the surface color or the
other colors. However, as errors were not equally distributed
across the incorrect labels in the training (abstract shape) dataset,
we need to compare the misclassification results for the incon-
gruent condition to the results from the congruent condition, to
take these differing base rates into account. For each object in the
incongruent condition (e.g., yellow strawberry), we have a color-
matched object in the congruent condition (e.g., yellow banana).
We made use of these matched stimuli by looking at misclassifi-
cations and checking how frequently the implied color of an
incongruent object (e.g., red for a yellow strawberry) was pre-
dicted compared with the matched congruent object (e.g., red for
a yellow banana). If the implied color of incongruently colored
objects was activated along with the surface color, we should see
a higher rate of implied color predictions (e.g., red) for the
incongruent object (e.g., yellow strawberry) than for the color-
matched congruent object (e.g., yellow banana).

The results (Fig. 5) do not show this pattern: at the first peak
(;80–110 ms), the “other” colors are actually more likely to be
chosen by the classifier than the implied color, for both the con-
gruent and incongruent condition. A possible explanation for
not seeing an effect of implied color in the color decoding analy-
sis is that the decoding model is based on the actual color pat-
tern, whereas the timing and mechanisms of implied color
activation may be different (Teichmann et al., 2019).

The goal of the third analysis was to examine whether
shape representations are affected by color congruency. It
could be the case, for example, that the representation of ba-
nana shapes compared with strawberry shapes is enhanced
when their colors are correct. First, we tested when shape rep-
resentations can be decoded independent of color congruency.
We trained the classifier to distinguish between the five

Figure 3. A, The color decoding analysis when training the classifier to distinguish between the different color categories of the
abstract shapes and testing on a block of independent abstract shape trials. B, The decoding accuracy for the color decoding analy-
sis over time. Shading represents the SE across participants. Black dashed line indicates chance level (25%, red vs green vs orange
vs yellow). Filled dots indicate significant time points, corrected for multiple comparisons. Horizontal bar above the curve represents
the 95% CI of the peak. C, The results of an exploratory searchlight analysis over small sensor clusters averaged across the time
points of the 95% CI for peak decoding. Colors represent the decoding accuracies at each sensor. D, A confusion matrix for peak
decoding (140ms) showing the frequencies at which color categories were predicted given the true class. E, The similarity of the
color categories, which might underlie the results in D.
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Figure 4. Results of the color decoding analysis for the congruent and incongruent trials. Here, the classifier was trained to distinguish the color of all abstract shape trials and tested on the
congruent and incongruent trials separately (A). B, The classification accuracy over time for the congruent (blue) and incongruent (green) trials. Shading represents the SE across participants.
Black dashed line indicates chance level (25%, red vs green vs orange vs yellow). Blue (congruent) and green (incongruent) dots indicate time points at which we can decode the surface color
significantly above chance, corrected for multiple comparisons. C, The bootstrapped differences in peak time (top) and the bootstrapped differences in decoding duration (bottom) for the con-
gruent and the incongruent conditions. D, The results of the same analysis across all possible training and testing time point combinations. These time-time matrices allow us to examine how
the signal for the congruent colors (left) and incongruent colors (right) evolves over time. Top row, The classification accuracy at every time point combination, with lighter pixels representing
higher decoding accuracies. Bottom row, Clusters where decoding is significantly above chance (yellow), corrected for multiple comparisons.
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different abstract shapes in a pair-
wise fashion and then tested its per-
formance on independent data
(Fig. 6A). The data show that shape
information can be decoded in a
cluster stretching from 60 to
500ms (Fig. 6B). Running an ex-
ploratory searchlight analysis on
small clusters of sensors (9 at a
time) shows that shape information
at peak decoding is mainly driven
by occipital sensors (Fig. 6C).

To examine whether color affects
object processing, we trained a classi-
fier to distinguish between trials in
which the participant saw one of the
exemplars of each of the 20 objects in
grayscale (e.g., grayscale strawberry
1, grayscale cherry 1, etc.). We then
tested at which time point the classi-
fier could successfully cross-general-
ize to the other exemplar of that
object in the congruent and incon-
gruent condition separately (Fig.
7A). If object representations (e.g.,
banana) are influenced by the typi-
cality of their colors, then cross-gen-
eralization should be different for
congruent and incongruent trials.
Although the exact images are
unique, there are shared shape char-
acteristics between exemplars (e.g.,
the two frog exemplars share some
shape aspects despite being different
postures), which can be expected to
drive an effect. The results show the
neural data have differential infor-
mation about the object in a cluster
stretching from 65 to 500ms for
both the congruent and the incon-
gruent test sets (Fig. 7B). These
results show that we can decode the
object class early on, at a similar time
to when we can decode the abstract shape conditions, suggesting
that the classifier here is driven strongly by low-level features (e.
g., shape), rather than being influenced by color congruency. The
time course for congruent and incongruent object decoding is
very similar in terms of peak decoding and decoding duration
(Fig. 7C). Thus, our data suggest that there is no effect of color
congruency on object processing.

Overall, the results here show that single features present
within the incoming visual stimuli are decodable earlier than the
congruency between them, which can be seen as an index for
accessing stored conceptual knowledge (Fig. 8). When we com-
pare color and shape decoding for abstract shapes and for con-
gruently and incongruently colored objects, the decoding onsets
are very similar, suggesting that the initial processes of single-fea-
ture processing are not influenced by congruency. However,
peak color decoding occurs later for incongruently colored com-
pared with congruently colored objects, suggesting that color
congruency influences color processing to some degree.

Discussion
A crucial question in object recognition concerns how incoming
visual information interacts with stored object concepts to create

meaningful vision under varying situations. The aims of the cur-
rent study were to examine the temporal dynamics of object-
color knowledge and to test whether activating object-color
knowledge influences the early stages of color and object process-
ing. Our data provide three major insights: First, congruently
and incongruently colored objects evoke a different neural repre-
sentation after ;250 ms, suggesting that, by this time, visual
object features are bound into a coherent representation and com-
pared with stored object representations. Second, color can be
decoded at a similar latency (;70 ms) regardless of whether par-
ticipants view colored abstract shapes or congruently and incon-
gruently colored objects. However, peak decoding occurs later
when viewing incongruently colored objects compared with con-
gruent ones. Third, we do not find an influence of color congru-
ency on object processing, which may suggest that behavioral
congruency effects are because of conflict at a later stage in
processing.

Color congruency can act as an index to assess when prior
knowledge is integrated with bound object features. When
comparing brain activation patterns of the same objects pre-
sented in different colors, there was a decodable difference
between congruent and incongruent conditions from ;250
ms onward, suggesting that a stored object representation

Figure 5. A, The frequency of a predicted class when the classifier is trained on distinguishing colors in the abstract shape condi-
tion and tested on trials from the congruent (dotted lines) and incongruent (full lines) conditions. Shading represents the SE across
participants. There are clear peaks for the correct prediction of the surface color between 100 and 150 ms (purple lines). In cases
where the classifier makes an error, there is no evidence that the classifier picks the implied object color (blue lines) more frequently
than the other incorrect colors (green lines). The classifier is trained on the abstract shape condition, which has an uneven color sim-
ilarity; the errors in the incongruent condition have to be interpreted in relation to how often the matched implied color in the con-
gruent condition is predicted. B, The difference of the classifier predicting the implied over the other colors for the congruent (grey)
and incongruent (red) conditions.
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that contains information about the typical color of an object
must have been activated by this stage. Before this time, the
signal is primarily driven by processing of early perceptual
features, such as color and shape, which were matched for
the congruent and incongruent conditions (same objects,
same colors, only the combination of color and shape dif-
fered). Although from our data we cannot draw direct con-
clusions about which brain areas are involved in the
integration of incoming visual information and stored object
knowledge, our congruency analysis adds to the fMRI litera-
ture by showing the relative time course at which a meaning-
ful object representation emerges. Activating object-color
knowledge from memory has been shown to involve the ATL
(e.g., Coutanche and Thompson-Schill, 2015), and there is
evidence that object-color congruency coding occurs in peri-
rhinal cortex (Price et al., 2017). Further support on the
involvement of the ATL in the integration of incoming sen-
sory information and stored representations comes from
work on patients with semantic dementia (e.g., Bozeat et al.,
2002) and studies on healthy participants using TMS (e.g.,
Chiou et al., 2014). Higher-level brain areas in the temporal
lobe have also been shown to be part of neuronal circuits
involved in implicit imagery, supporting visual perception by
augmenting incoming information with stored conceptual
knowledge (e.g., Miyashita, 2004; Albright, 2012). The latency of
congruency decoding here may thus reflect the time it takes to

compare visual object representations
with conceptual templates in higher-
level brain areas, such as the ATL, or the
time it takes for feedback or error signals
about color congruency to arrive back in
early visual areas.

Our results also show that color
congruency has an effect on color
processing. We found color decoding
onset at a similar time (;70 ms) for
abstract shapes and congruently and
incongruently colored objects. This
indicates that color signals are acti-
vated initially independently of object
shape, consistent with previous work
showing that single features are proc-
essed first and that the conjunction of
color and shape occurs at a later stage
(e.g., Seymour et al., 2016). However,
we also found differences between
color processing in congruent and
incongruent conditions: The color sig-
nal peaked later in the incongruent rel-
ative to the congruent condition,
suggesting that congruency influences
the time course of color processing to
some degree. Our time-generalization
analysis (Fig. 4D) supports this by
showing that there is a different
dynamic for congruent and incongru-
ent trials. One possible explanation for
this finding is that unusual feature
pairings (e.g., shape and color or tex-
ture and color) might lead to local
feedback signals that prolong color
processing. Alternatively, consistent
with the memory color literature (e.g.,

Hansen et al., 2006; Olkkonen et al., 2008; Witzel et al., 2011), it
is possible that typical colors are coactivated along with other
low-level features. For incongruent trials, this would then lead to
two potential colors needing to be distinguished, extending the
timeframe for processing and delaying the peak activation for
the surface color of the object.

The time course of exemplar decoding we present is con-
sistent with previous studies on object recognition. Here, we
found that exemplar identity could be decoded at ;65 ms.
Similar latencies have been found in other MEG/EEG decod-
ing studies (Carlson et al., 2013; Cichy et al., 2014; Isik et al.,
2014; Contini et al., 2017; Grootswagers et al., 2019) and sin-
gle-unit recordings (e.g., Hung et al., 2005). Behavioral data,
including the reaction times collected from our participants,
show that color influences object identification speed (e.g.,
Bramão et al., 2010). The neural data, however, did not show
an effect of object color on the classifier’s performance when
distinguishing the neural activation patterns evoked by dif-
ferent object exemplars. For example, the brain activation
pattern in response to a strawberry could be differentiated
from the pattern evoked by a lemon, regardless of the con-
gruency of their colors. This finding is consistent with previ-
ous results (Proverbio et al., 2004) but might seem puzzling
because color congruency has been shown to have a strong
effect on object naming (e.g., Tanaka and Presnell, 1999; Nagai and

Figure 6. A, The shape decoding analysis when training the classifier to distinguish between the different categories of
the abstract shapes and testing on a block of independent abstract shape trials. B, The decoding accuracy for the shape
decoding analysis over time. Shading represents the SE across participants. Black dashed line indicates chance level (50%,
pairwise comparison of all shapes). Filled dots indicate significant time points, corrected for multiple comparisons.
Horizontal bar above the curve represents the 95% CI of the peak. C, The results of an exploratory searchlight analysis
over small sensor clusters averaged across the time points of the 95% CI for peak decoding. Colors represent the decoding
accuracies at each sensor.
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Yokosawa, 2003; Chiou et al., 2014). One
plausible possibility is that the source of be-
havioral congruency effects may be at the
stage of response selection, which would not
show up in these early neural signals. More
evidence is needed, but there is no evidence
in the current data to suggest that color con-
gruency influences early stages of object
processing.

Our data demonstrate that object rep-
resentations are influenced by object-color
knowledge, but not at the initial stages
of visual processes. Consistent with a
traditional hierarchical view, we show
that visual object features are processed
before the features are bound into a
coherent object that can be compared
with existing, conceptual object repre-
sentations. However, our data also sug-
gest that the temporal dynamics of color
processing are influenced by the typical-
ity of object-color pairings. Building on
the extensive literature on visual perception, these results
provide a time course for the integration of incoming visual infor-
mation with stored knowledge, a process that is critical for inter-
preting the visual world around us.
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