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Perceptual similarity is a cognitive judgment that represents the end-stage of a complex cascade of hierarchical
processing throughout visual cortex. Previous studies have shown a correspondence between the similarity of
coarse-scale fMRI activation patterns and the perceived similarity of visual stimuli, suggesting that visual objects
that appear similar also share similar underlying patterns of neural activation. Here we explore the temporal re-
lationship between the human brain's time-varying representation of visual patterns and behavioral judgments
of perceptual similarity. The visual stimuli were abstract patterns constructed from identical perceptual units
(oriented Gabor patches) so that each pattern had a unique global form or perceptual ‘Gestalt’. The visual stimuli
were decodable from evoked neural activation patterns measured with magnetoencephalography (MEG), how-
ever, stimuli differed in the similarity of their neural representation as estimated by differences in decodability.
Early after stimulus onset (from 50ms), amodel based on retinotopic organization predicted the representation-
al similarity of the visual stimuli. Following the peak correlation between the retinotopic model and neural data
at 80ms, the neural representations quickly evolved so that retinotopy no longer provided a sufficient account of
the brain's time-varying representation of the stimuli. Overall the strongest predictor of the brain's representa-
tion was amodel based on human judgments of perceptual similarity, which reached the limits of the maximum
correlation with the neural data defined by the ‘noise ceiling’. Our results show that large-scale brain activation
patterns contain a neural signature for the perceptual Gestalt of composite visual features, and demonstrate a
strong correspondence between perception and complex patterns of brain activity.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

Judgments of perceptual similarity require integrating information
across a complex hierarchical network of brain regions. An early idea
of how perceptual similarity might be conceived at the neural level is
as a product of representational distance (Shepard, 1964; Torgerson,
1965). Specifically, visual objects that appear similar are assumed to
share similar underlying neural representations. One of thefirst demon-
strations of this idea with fMRI showed that different object categories
(such as faces, houses, chairs) that share image-based attributes also
share a similar underlying neural structure (O'Toole et al., 2005). Simi-
larity in stimulus structure and in brain activation patterns for object
categories were both defined by a classification analysis on the principal
components derived from either the stimulus set or the patterns of fMRI
activation; and categories that weremore confusable with image-based

classification were also more confusable in their brain activation
patterns.

Building on this mapping between stimulus similarity and neural
representation, several studies have observed a correlation between be-
havioral similarity judgments for objects and their corresponding
neural representations. Rotshtein et al. (2005) usedmorphs between fa-
mous faces within an fMRI adaptation paradigm and found that differ-
ent brain regions associated with face processing were responsive to
the physical features of faces (inferior occipital gyrus) versus the per-
ceived identity of faces (right fusiform gyrus). Several studies have
used rich image sets (such as objects from multiple categories) and
shown that stimuli that are rated more similar by human observers
also share more similar patterns of fMRI activation (Edelman et al.
1998; Hiramatsu et al. 2011, Mur et al. 2013; Connolly et al. 2012).
These results suggest that objects that appear more similar have more
similar brain representations; however, since these studies have
focused on object recognition, they have used stimuli in which percep-
tual similarity is unavoidably conflated with conceptual similarity.
Other studies have emphasized the role of image statistics, and used
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naturalistic stimuli varying on both semantic and visual dimensions
(Hiramatsu et al., 2011), in which the mapping between different fea-
ture dimensions and perceptual similarity is complex. Consequently,
in these experiments it is not possible to separate out the effects of per-
ceptual similarity from other forms of similarity among the stimulus
classes.

A notable exception is a series of studies examining fMRI activation
patterns for novel shapes and objects in the object-selective lateral
occipital complex (LOC). In an early demonstration, Kourtzi and
Kanwisher (2001) found that following adaptation, the BOLD response
in LOC for stimuli with the same shape was reduced compared to that
for different shapes, even when the local contours of the ‘same shape’
condition were changed through manipulations in stereoscopic depth
and occlusion. This suggests that stimuli with similar perceived shape
have more similar activation patterns in LOC, irrespective of differences
in local contours. Similarly, Haushofer et al. (2008) reported that
fMRI activation patterns in the anterior LOC (pFs) for novel two-
dimensional shapes that varied parametrically in aspect ratio and
skew correlated with the results of a same-different task with human
observers; shapes that were more confusable have more similar activa-
tion patterns. Conversely, activation patterns in the posterior LOC (LO)
correlatedmorewith the physical parameters of the stimuli (i.e., the ab-
solutemagnitude of difference in aspect ratio and skew, rather than per-
ceived shape similarity). Op de Beeck, Torfs and Wagemans (2008)
reported a significant correlation between the similarity of fMRI activa-
tion patterns in LOC and ratings of perceived shape similarity for novel
categories of objects defined by their shaded three-dimensional shape.
In contrast to Haushofer et al. (2008), Op de Beeck et al. (2008) ob-
served the correlation with perceptual similarity across LOC, which
the authors attribute to differences between the studies in both the
stimuli and the similarity task.

In sum, there is substantial evidence that the similarity of coarse-
scale fMRI activation patterns can be related to the perceived similarity
of visual objects of varying complexity (e.g. Op de Beeck et al., 2008;
Haushofer et al., 2008; Edelman et al. 1998; Hiramatsu et al. 2011,
Mur et al. 2013; Connolly et al. 2012). The aims of the present study
are to build on this work by examining the extent to which perceptual
similarity is accessible in dynamic large-scale brain activation patterns
measured with MEG, and to probe the structure of the underlying neu-
ral representation by comparing the temporal performance of several
models. In order to separate perceptual similarity from other forms
(e.g. conceptual or semantic), we use a set of abstract visual patterns
as stimuli (see description below) and compare the performance of
models of early visual processing and stimulus properties to a model
of perceptual similarity. Most studies examining representational ge-
ometry have used fMRI (e.g. Clarke and Tyler, 2014; Edelman et al.,
1998; Hiramatsu et al. 2011;Mur et al., 2013), and focused on the trans-
formation of the representational space across spatial networks of brain
regions. Compared to other neuroimaging methods, fMRI has limited
temporal resolution, and consequently the temporal evolution of the
mapping between behaviorally relevant features and the structure
of neural representations has remained largely unexplored. To
complement previous fMRI results, our focus here is on the temporal
(rather than spatial) evolution of the neural representational geometry
in response to visual patterns.

In order to investigate the information content of the brain's time-
varying representation of the stimuli, we employed representational
similarity analysis (RSA; Kriegeskorte and Kievit, 2013) to test several
candidate models of the representational structure, including a model
of perceptual similarity. RSA is a model-testing approach for studying
brain activation patterns, which builds on traditional brain ‘decoding’
methods (e.g. multivariate pattern analysis) to facilitate conclusions
about the content of decodable information (Kriegeskorte and Kievit,
2013). The intuition behind RSA is that differences in the decodability
of stimuli can be interpreted as a proxy for neural representational
similarity. Stimuli that are more difficult to decode from each other

are assumed to have more similar underlying neural representations.
If a model successfully predicts the representational distance between
stimuli, it provides evidence that the source of representational infor-
mation in the model is present in the neural population code. An addi-
tional strength of applying RSA to MEG data is that the fine-scale
temporal resolution of the neuromagnetic signal reveals the emergence
of representational geometry over time, providing a more complete
characterization of the model's performance.

In order to systematically decouple perceived similarity from both
semantics and lower-level visual features, we used an abstract stimulus
set of visual patterns constructed from arrangements of Gabor patches.
These stimuli will drive the response of neurons in early visual cortex,
and make straightforward predictions for a range of models that can
be used to characterize the evoked cortical response to the stimuli.
The stimulus set varied along three dimensions: the number of ele-
ments, the local orientation of each Gabor patch, and the degree of ori-
entation coherence among the elements. Critically, although the stimuli
are constructed from identical elements, each stimulus has a unique
global form or perceptual ‘Gestalt’ (Fig. 1A). The advantage of this stim-
ulus set is that models of early visual processing and stimulus features
can easily be constructed for comparison with a higher-level perceptual
RDM based on the unique global form produced by the different ar-
rangements of Gabors. We compare a perceptual similarity model de-
rived from ratings of the stimuli made by human observers to several
models1 based on the neural processing of low-level visual features:
(1) a model based on differences in retinotopic stimulation between
the stimuli, (2) a V1-like model based on HMAX (Riesenhuber and
Poggio, 1999; Serre and Riesenhuber 2004; Hubel and Wiesel, 1965),
(3) a model of local orientation differences between the stimuli, and
(4) a model which predicts decodability based on inter-stimulus differ-
ences in the radial bias (e.g. Schall et al., 1986; Sasaki et al., 2006).

Materials and methods

Participants

Twenty volunteers (8 male, 12 female) with an average age of
21.6 years participated in the experiment and received financial reim-
bursement. Informed written consent was obtained from each volun-
teer prior to the experiment, and all experimental procedures received
approval from the institutional ethics committee at the University of
Maryland.

Stimuli

Visual stimuli were arrays of Gabor patches (sine wave convolved
with a 2D Gaussian window) in a log polar arrangement (inner radius:
1°, outer radius: 8°)with four rings and twelve spokes (Fig. 1A). The size
of the elements was log scaled based on their position relative to central
fixation to account for cortical magnification in early visual cortex. The
26 visual stimuli were designed in 13 complementary pairs to facilitate
pairwisemultivariate pattern classification as a foundation for RSA. Nine
stimulus pairs were orientation complements constructed from 48 indi-
vidual Gabors (Fig. 1A, sets 1–4). In each pair, elements at correspond-
ing spatial locations were rotated 90°. These patterns were thus
maximally different in terms of orientation disparity, but equivalent in
terms of coarse scale retinal stimulation. The remaining four pairs
were retinal complements, constructed from 24 individual Gabors
(Fig. 1A, set 5). For these pairs, elements present in one pattern were
absent in the corresponding spatial location of its complement. Four

1 We use the broad definition of ‘model’ implied by the Representational Similarity
Analysis framework, as any potential explanation for the variance in the similarity of the
brain representations observed for the visual stimuli — hypotheses which may be based
on e.g. computational models, behavioral ratings, or straightforward predictions based
on shared stimulus features.
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additional visual stimuli were also presented during the experiment.
Due to a coding error in stimulus generation, these stimuli were either
identical/redundant in the experimental design (i.e. duplicate spiral
and ring patterns). The data was not analyzed for these patterns.

Procedure

Participants viewed the visual stimuli while lying supine in a mag-
netically shielded recording chamber. Stimuli were projected onto a
translucent screen located approximately 30 cm above the participant.
The experiment was run on a Dell PC desktop computer using
MATLAB (Natick, MA, U.S.A.) and functions from the Psychtoolbox
(Brainard, 1997; Pelli, 1997; Kleiner, et al. 2007). The visual stimuli
were displayed on the screen in the MEG for 250 ms with a variable
inter-stimulus interval (700–1000 ms). Participants ran eight blocks of
trials of approximately 7 min in length, which each contained six pre-
sentations of each visual stimulus, presented in random order (48 pre-
sentations total per stimulus). Participants performed a fixation task
during the experimental runs (Fig. 1B), which involved detecting
whether a small letter (0.5°) in the center of the stimulus was a vowel
or a consonant (randomly drawn from the set {‘A’ ‘E’ ‘I’ ‘O’ ‘U’ ‘R’ ‘N’ ‘X’
‘S’ ‘G’}). Feedback was provided by changing the color of the fixation
target for 300 ms after each trial, and a performance summary was
displayed after each block of trials. The mean accuracy across partici-
pants for the task was 97% correct (SD= 2.6%).

MEG acquisition and preprocessing

Neuromagnetic recordings were acquired with a whole-head axial
gradiometer MEG system (KIT, Kanazawa, Japan). The system had 157
recording channels with 3 reference channels. Recordings were filtered
online from 0.1 to 200 Hz using first order RC filters and digitized at
1000 Hz. Time shifted principal component analysis (TSPCA) was used
to denoise the data offline (de Cheveigne and Simon, 2007). Trials
were epoched from−100ms to 600ms relative to stimulus onset. Trials
with eye movement artifacts were removed automatically using an al-
gorithm that detects large deviations in the root mean square (RMS)
amplitude over 30 selected eye-blink sensitive channels. The average
rejection ratewas 2.2% (SD=1.0%) of trials across participants. After ar-
tifact rejection, thedatawere resampled to 200Hz, and corrected for the
latency offset introduced by resampling. Principal component analysis
was used to reduce the dimensionality of the data. Using a criterion of
retaining 99% of the variance, the number of dimensions was reduced
from 157 (recording channels) to 62 principal components, on average
across subjects.

Pattern classification

Weused a naïve Bayes implementation of linear discriminant analy-
sis (LDA; Duda et al., 2001) for the decoding analysis. The input to the

Fig. 1. Experimental design. (A) Visual stimuli in set 1 have a coherent global orientation [0°, 90°, 45°, or 135°], while the patterns in set 2 have an equivalent overall local orientation
disparity but lack a coherent global orientation. Set 2 patterns were created by generating an array of elements with random orientations, and then rotating the elements of the
random seed pattern by 90°, 45°, and 135°. In set 3, each pattern has alternating elements of two orientations (top pair: 0 and 90°, bottom pair: 45° and 135°), with the order of
orientations swapped between the members of each pair (top and bottom rows). In set 4, the star and spiral pairs are radially balanced, with elements rotated either 45° or −45°
relative to (invisible) radial spokes originating from fixation. The third pair contains one pattern with a strong radial bias (radial spokes) and one with a weak bias (rings). All pairs in
set 5 are retinal complements, with the Gabor patches in complementary retinal locations.
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classifier was the factor loadings for the principal components. General-
ization of the classifier was evaluated using k-fold cross validation with
a ratio of 9:1 training to test. To improve the signal to noise ratio, trials
were averaged in pseudo trials (Isik et al., 2014; Meyers, 2013). Each
pseudo trial was an average of four trials. The set of 48 trials per pattern
(sometimes less after artifact rejection)was reduced to 10 pseudo trials
by averaging a random selection of trials. Nine of the pseudo trials were
used to train the classifier, and one was used to test the classifier.
Thus for each pairwise comparison there were 18 trials used to train
(nine from each stimulus pattern) and two used to test the classifier
(one from each pattern). This procedure was repeated 100 times, each
time with a new randomization. Classification accuracy is reported as
average classifier performance (d-prime). The decoding analysis was
run for all possible pairwise comparisons between stimulus patterns
for each time point.

Model definitions

Within the RSA framework, we constructed severalmodel represen-
tational dissimilarity matrices (RDMs) based on stimulus properties
that may account for the decodability of the stimuli to compare with
the empirical time-varying MEG RDM. Each model makes predictions
about the decodability of the visual stimuli for each pairwise stimulus
comparison (exceptions noted below inmodel definitions). Themodels
are not intended to be comprehensive models of neural processing, but
instead are used to identifywhat stimulus propertiesmay underlie their
decodability from the neuromagnetic signal measured with MEG. In
each case the model predictions are represented as RDMs with values
normalized to range from 0 (identical in terms of the model) to 1
(extremely different in terms of the model).

Perceptual model

Fifty participants provided ratings of the perceived similarity of the
patterns in an online study conducted using Amazon's Mechanical
Turk services. Participants were briefly shown (duration: ~250 ms)
two of the individual patterns simultaneously and rated the similarity
of the patterns on a scale from 1 to 100. The written instructions to par-
ticipants read: “Judge the visual similarity of the images: Your task will
be to rate how similar two abstract images are on a scale from 0 to 100
using the slider. Don't think about the task too hard, we are interested in
your immediate first impression. The images will only be shown briefly
and youwill only get one chance to see them, somake sure that you are
ready when you press the “Begin experiment”/“View next” button.”
Each participant made ratings for all the possible pairwise comparisons
(325 comparisons total), and these were used to create a perceptual
representational dissimilarity matrix (RDM) for each participant. As
the visual patterns were all constructed from identical Gabors, we as-
sume that participants based their similarity judgments for each pair
on the overall global arrangement of theGabors in each pattern. Individ-
ual RDMs were normalized to range from 0 to 1, and then averaged to
create a group perceptual model RDM (Fig. 4B).

Retinal envelope model

Previously, we have shown that differences in retinal projection
between higher-level object stimuli are a robust predictor of their
decodability withMEG (Carlson et al., 2011). To evaluate the role of ret-
inal projection in the representational geometry of the current lower-
level visual stimuli we constructed a model that predicts decodability
based solely on differences between exemplars in terms of coarse
scale retinotopic stimulation (Fig. 4B). Specifically, this model predicts
that pairs of stimuli which have individual Gabors in different spatial lo-
cations (retinal positions relative to central fixation) relative to each
other (e.g. Fig. 1, pairs in set 5) will be easier to decode than pairs that
have individual Gabor elements in spatially corresponding locations

(e.g. Fig. 1, sets 1–4). Thus the retinal envelope model predicts
decodability solely on the basis of differences in local retinal position be-
tween stimulus pairs.

To compute dissimilarity of their retinal position, each element loca-
tion in the stimulus is a location in a vector; and at each location in the
vector a 1 or 0 indicates the presence or absence of a Gabor patch. The
dissimilarity between two stimulus patterns is the absolute difference
between the two patterns' vectors. Dissimilarity was computed for all
possible pairwise comparisons between the patterns to create the
model RDM. In detail, according to this model, stimulus pairs in which
both patterns have 48 elements are predicted to be difficult to decode
from each other because they both have the same number of elements
in the same locations (blue region in the retinal envelope model RDM
shown in Fig. 4B). In contrast, stimulus pairs in which one pattern has
24 elements and the other has 48 elements are predicted to be easier
to decode (grey region in the model RDM). Finally, stimulus pairs in
which both patterns have 24 elements but in different spatial locations
(i.e.: no overlap in the position of the elements between the two mem-
bers of the pair) are predicted to be the easiest to decode (red/yellow
region in the model RDM). Another way of conceptualizing the
stimulus differences captured by the retinal envelope model is in
terms of local contrast. Pairs of patterns that have Gabor elements in dif-
ferent locations also have a corresponding difference in local contrast
(e.g. between the mid-grey of the background in one pattern and the
white-black of theGabor in the other pattern),which is likely to contrib-
ute to decodability. RMS contrast is known to influence the overall
magnitude of activation at a population level in both BOLD fMRI
(Olman et al., 2004; Rieger et al., 2013) and MEG (Rieger et al., 2013).“

V1 model (HMAX-S1)

To approximate the response of early visual areas to the stimuli, we
employed the HMAXmodel. The S1 layer of HMAX encodes orientation
at multiple scales, based on knowledge of receptive field properties of
neurons in early visual areas (Riesenhuber and Poggio, 1999; Serre
and Riesenhuber 2004; Hubel and Wiesel, 1965). The dissimilarity be-
tween the visual stimuli for HMAX's S1 layers was computed using
code available on the web (http://cbcl.mit.edu/jmutch/cns/index.
html#hmax). The inputs to HMAXwere the images of the visual stimuli
(rendered at 600 × 600 pixel resolution). HMAX returns a feature
vector, which represents the simulated cortical response to the stimu-
lus. To compute dissimilarity between the stimuli, we computed the
Euclidean distance between the feature vectors for each stimulus pair.
Dissimilarity was computed for all possible pairwise comparisons
between the stimuli to create the V1 model RDM (Fig. 4B).

Orientation disparity model

The orientation disparity model predicts decodability based on local
orientation differences between the stimuli (Fig. 6A). Orientation dis-
parity was computed by summing the absolute orientation difference
between corresponding Gabor elements in each stimulus pair. Dissimi-
larity was computed for all possible pairwise comparisons between the
stimuli and then normalized to create the model RDM. Note that this
model only makes predictions for the decodability of patterns with all
of the 48 elements (Fig. 1, sets 1–4), as it is not possible to compute
orientation disparity for unpaired Gabor patches.

Radial preference model

Neurophysiological studies have observed a bias in the number of
neurons representing radial orientations (i.e. orientations that point to-
ward the fovea; Levick and Thibos, 1982; Leventhal and Schall, 1983;
Schall et al., 1986), and this bias has also been observed in human
fMRI studies (Sasaki et al., 2006; Mannion et al., 2010; Alink et al.,
2013). The radial preference model predicts decodability based on
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inter-stimulus differences in the radial bias (Fig. Fig. 6A). We modeled
the radial bias in the stimuli by computing each element's orientation
disparity relative to the radial orientation for its location in the visual
pattern relative to fixation (θ), and taking its cosine (e.g. 0° disparity =
1, 90° disparity = 0). The difference in the radial bias between two
patterns was calculated as the sum of the absolute value of the
difference between the radial bias responses for their spatially
corresponding Gabor elements. Note that this model also only makes
predictions for the decodability of patterns with all of the 48 elements
(Fig. 1, sets 1–4).

RSA model evaluation and noise ceiling

We used the RSA framework (Kriegeskorte et al., 2008; Nili, et al.,
2014) to study the brain's emerging representation of the stimuli by
comparing the models to time resolved MEG RDMs (Cichy et al., 2014;
Redcay and Carlson, 2015). Correspondence between the empirical
RDM (MEG data) and the normalized model RDMs was assessed by
computing Kendall's tau-a (i.e., a rank-order correlation) for each time
point and each subject, producing a time-varying correlation between
the model and MEG data. Significance was assessed with a non-
parametric Wilcoxon signed rank test (FDR b 0.01). A cluster threshold
of 3 consecutive time points was used to determine onset latencies at
the group-level (Fig. 4D). Individual subject latencies (Fig. 4C) were
computed by comparing each timepoint's correlation (Tau-a) to a null
distribution of correlations, which were derived from bootstrapping
by shuffling the RDMs (significance assessed at FDR b 0.05). The onset
was computed as the first significant time point N 0 (stimulus onset).
No consecutive time point criterion was used for individual latencies.
Peak latencies were computed as the highest value of the correlation
between the data and the model.

We used the ‘noise ceiling’ as a benchmark for model performance
(Nili, et al., 2014). The noise ceiling estimates the magnitude of the ex-
pected correlation between the true model RDM and the MEG RDM
given the noise in the data. The upper bound is calculated by correlating
the group averageMEG RDMwith the individual RDMs. This correlation
is overfitted to the individual RDMs and produces an upper estimate
of the true model's average correlation. The lower bound is calculated
by the ‘leave-one-subject-out’ approach, so that each subject's individu-
al RDM is correlated with the RDM for all remaining subjects,
preventing overfitting. The average correlation across all iterations of
this calculation underestimates the correlation with the true model
and defines the lower bound of the expected correlation with the true
model RDM.

Projection of weight maps onto sensor space

To identify the contribution of different sensors to decoding perfor-
mance we constructed weight maps for four key time points: 40 ms
(decoding onset), 60ms, 90ms (peak decoding), and 145ms (peak cor-
relation between perceptual RDM and MEG RDM). For each subject
(N = 20) and pairwise stimulus comparison made by the classifier
(N=325) we bootstrapped (10×) the process of averaging 4 randomly
selected trials per exemplar into pseudotrials (as used for classification,
see above), and extracted the LDA weights (i.e. linear coefficients) for
the comparison. As raw classifier weights are difficult to interpret (see
Haufe et al., 2014), before projection into sensor space we transformed
the weights using the recently described method of Haufe et al. (2014).
Wemultiplied theweights (W) by the covariance in the pseudotrials so
that W′ = Σ(pseudotrials) × W. The transformed weights (W′) for all
pairwise comparisons were averaged per subject and multiplied by
the subject-specific PCA coefficients to obtain a projection onto the sen-
sor space. Next, FieldTrip (Oostenveld et al., 2011) was used to trans-
form the gradiometer topography into the planar gradients, which
were then combined and interpolated at the sensor locations to create
intuitive topographic maps (Fig. 3; Movie 1).

Results

Early decoding of abstract visual patterns from MEG

Recent MEG decoding studies have shown that early visual feature
representations (e.g., retinotopic location, orientation, and spatial fre-
quency) and higher-level object categories can be decoded from
neuromagnetic recordings (Carlson, et al. 2011; Carlson et al., 2013;
Cichy et al., 2014; Cichy et al., 2015; Ramkumar, et al. 2013).Wefirst ex-
amined whether it was possible to decode the abstract patterns
(Fig. 1A). Decoding analysis was performed using a naïve Bayes imple-
mentation of linear discriminant analysis (LDA, Duda et al. 2001), in
which the classifierwas trained to decode the visual stimulus that a par-
ticipant was viewing from the corresponding MEG recordings. The
decoding analysis was run for all possible pairwise comparisons be-
tween visual stimuli for each time point. Fig. 2 shows average decoding
performance as a function of time. Classification accuracy, reported as d-
prime, is the average classifier performance. Decoding performance is
above chance beginning 40 ms after stimulus onset, consistent with es-
timates of the latency of visual inputs to reach the cortex (Aine, Supek,
and George, 1995; Jeffreys and Axford, 1972; Nakamura et al., 1997;
Supek et al., 1999), and with the onset of spatial frequency (51 ms)
and orientation decoding (48-65ms) from MEG (Cichy et al., 2015;
Ramkumar et al., 2013). After onset, decoding performance rises to a
peak at 90 ms and then decays slowly. Following the initial peak at
90 ms, there is a second smaller peak in decoding at 400 ms, which
corresponds to stimulus offset (Carlson, et al. 2011).

Next, we constructed a time-varying RDM from the classification
data, which represents the decodability of each stimulus pair as a func-
tion of time. Fig. 3 shows five frames from the time-varying RDM (see
Movie 1 for the complete RDM shown at 5 ms resolution). At stimulus
onset (0 ms), the RDM is dominated by dark blue, indicating a lack of
decodability between the stimulus pairs. At 40 ms, which corresponds
to the onset of significant decoding performance, a subtle pattern of
decodability begins to emerge, reflected in the lighter blue regions of
the RDM. At peak decoding (90 ms), the RDM is dominated by warm
colors, indicating a high level of decodability for most stimulus pairs.
The final RDM shown (145ms) is the time pointwith the highest corre-
lation with the perceptual RDM (individual subject median: 142.5 ms;
group-level: 145 ms).

Perceived similarity predicts decodability

The capacity to decode the visual stimuli from patterns of neural ac-
tivation shows that information related to the visual stimuli exists in the
MEG signal. We then used RSA to investigate the nature of this
decodable signal. The empirical time-varying RDM in Fig. 3 (see also:
Movie 1) represents the decodability of the neural patterns associated
with visual stimulation as a function of time. To summarize the overall
decodability of the stimulus set, we calculated the time-averaged RDM
from the first time point in which decodability is above chance
(40 ms) to stimulus offset (250 ms). The average RDM (Fig. 4A) quan-
tifies how decodable each unique stimulus pair is and measures the
similarity between their neural activation patterns. There is clear visible
structure in the RDM, indicating that some stimuli share a more similar
neural representation than others. The time-averaged RDM in Fig. 4A is
for illustration, for the formalmodel comparisonswe used the complete
time-varying RDM (Fig. 3, Movie 1).

Our central question is howperceived similarity relates to the brain's
emerging representation of the stimuli. We addressed this within the
RSA framework by constructing a perceptual RDM that predicts the rel-
ative decodability of each stimulus pair based on perceived similarity as
rated by human observers. The perceptual RDM is the average of the
normalized ratings for each pair made by each observer (Fig. 4B). The
perceptual RDM(Fig. 4B) shows clear structure, indicating that stimulus
pairs varied in their perceived similarity. In order to assess the
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correspondence between the perceptual RDM and the MEG data, we
used a rank-order correlation (Kendall's tau a) between the model
and empirical RDMs across time (Fig. 4D). Significant correspondence
between the model and the data was assessed with a non-parametric
Wilcoxon signed rank test.

We observed a strong correspondence between the behavioral rat-
ings of perceived similarity made by human observers and the brain's
time-varying representation of the stimuli, which is evident by visual
inspection of the neural and behavioral RDMs (compare Fig. 4A to the
perceptual RDM in Fig. 4B). This correspondence is supported by a sig-
nificant time-varying correlation between the perceptual RDM and
decodability (black trace, Fig. 4C). The correlation between the model
predictions and the decodability of the patterns begins 50ms after stim-
ulus onset, and remains significant over almost the entire time interval.
In addition, the correlation between the neural data and perceptual
RDM closely tracks the lower bound of the noise ceiling from approxi-
mately 150 ms after stimulus onset (black dotted line in Fig. 4C). This
shows that the magnitude of the observed correlation between the
behavioral and neural RDMs is within the theoretical upper limits for

the data, thus the perceptual RDM provides an explanation of the data
comparable with the true (unknown) model (Nili et al., 2014).

Can early visual representations explain decodability?

Perceptual similarity proved to be a near-optimal model for
predicting the neural similarity between abstract visual patterns. For
comparison we tested additional models of low-level visual features
and early visual processing that we reasoned were likely to predict
decodability. First, we constructed a retinal envelope model that pre-
dicts decodability based on inter-stimulus differences in retinal projec-
tion, as we have previously observed that retinal projection predicts the
decodability of higher-level object stimuli from MEG (Carlson et al.,
2011). The retinal envelope model (Fig. 4B) significantly correlates
with the MEG RDM beginning 50 ms after stimulus onset (Fig. 4D).
Following this early onset, the model correlation peaks at 80 ms and
then declines sharply (these are the group-level latencies, see Fig. 4C
for the distribution of the latencies for individual subjects). The early
success of this model indicates that the difference between the

Fig. 2.Average decodability of all stimulus pairs across time. Solid line is classifier performance (d-prime) averaged across all subjects (N=20) and stimulus pairs (N=325) as a function
of time. The black bar on the x-axis corresponds to stimulus presentation (0–250 ms). Shaded region marks ± 1 SEM. Disks below the plot indicate above chance decoding performance
(onset at 40 ms), with significance evaluated using a Wilcoxon signed rank test (FDR b 0.01).

Fig. 3. Time-varying representational dissimilaritymatrix (RDM) for all pairwise stimulus comparisons. Five timepoints are shown, the full time-varying RDM is available online as amovie
(seeMovie 1). The frames shownhere track the evolution indecodability from stimulus onset (0ms) to peak decoding at 90ms,which is dominated bywarm colors in the RDM, indicating
a high level of decodability formost stimulus pairs. Below the RDMs are averagedweightmaps in sensor space (averaged across all subjects and stimulus pairs) for four timepoints: 40, 60,
90, and 145ms.Weights are transformed from the classifier output using themethod described byHaufe et al. (2014) prior to projection onto sensor space (seeMaterials andmethods for
further details).
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retinotopic projections of stimuli is an important factor in the similarity
of their neural representation at the large-scale pattern level, particular-
ly immediately after stimulus onset. The model, however, fails to cap-
ture the complex structure of the neural representation of the stimuli
(Fig. 4A), and following this sharp early peak at 80 ms (which is well
below the theoretical maximum defined by the noise ceiling), the
model's predictive power drops quickly. In addition, the perceptual
RDM significantly outperformed the retinal envelope model in
explaining the MEG data for a substantial time period following the
early peak of the retinal envelope model (Wilcoxon rank sum test
with FDR b 0.01, significant time points marked with an asterisk
above the plots in Fig. 4D).

While retinotopic organization is clearly a dominant organizational
principle in visual cortex, early visual areas also encode a range of visual
features, e.g. orientation, that are not present in the retinal envelope
model. Orientation selectivity is evident in the earliest stages of visual
processing and is encoded in simple cell neurons in visual cortex
(Hubel and Wiesel, 1962, 1968). To construct a more complete model
of early visual processing, we built amodel based on the response prop-
erties of V1 simple cells from the predicted response profiles to the visu-
al stimuli from the output of the S1 layer of HMAX, a computational
model of early visual processing, which represents orientation at multi-
ple scales (Riesenhuber and Poggio, 1999; Serre and Riesenhuber 2004;
Hubel and Wiesel, 1965). The V1-HMAX model in Fig. 4B predicts that
nearly all stimulus pairs will be highly decodable. The model did fit

the MEG data beginning from 80 ms, with a peak at 140 ms. However,
the V1-HMAXmodel did not approximate the noise ceiling at any laten-
cy, andwas not as strong a predictor of the neural data as either the per-
ceptual RDM or the retinal envelope model. The difference between
modelswas significant, both the retinal envelopemodel and thepercep-
tual RDM had a significantly larger correlation with the MEG RDM than
the V1 model (significant time points are marked by diamonds and
crosses respectively above the plots in Fig. 4D). Additional “higher”
layers of HMAX up to layer C2 were also tested and performed similarly
(Fig. 5). Each layer of HMAX first reached a significant correlation with
the empirical MEG RDM between 55 and 90 ms, and for some sporadic
timepoints thereafter, but overall none of theHMAX layerswas a strong
predictor of the MEG data.

We speculated that one reason for the limited explanatory power of
the V1 model based on HMAX is possibly because it assigns too high a
weight to local orientation differences between the stimuli, and fails
to capture the perceptually salient differences in global form, which
are highly weighted by the perceptual RDM. To verify that local orienta-
tion differences are a poor predictor of decodability, we constructed a
RDM based on the overall magnitude of the orientation disparity be-
tween corresponding elements in the stimulus pairs (Fig. 6A). Although
this model was unsuccessful at predicting the neural data at any time
point (Fig. 6A), we found that we could decode the orientation of the
stimulus pairs that had a coherent global orientation (Fig. 6B, blue
trace; Fig. 1, set 1), consistent with previous reports of orientation

Fig. 4. RDMmodel comparisons. (A) Empirical RDMdisplaying the time-averaged decodability of all exemplar pairings from the time decodabilityfirst is above chance (40ms) to stimulus
offset (250ms). (B) Model RDMs scaled to range from 0 (identical) to 1 (highly dissimilar) for the perceptual similarity model, the retinal envelopemodel, and the V1model. Eachmodel
makes a prediction for every possible stimulus pairing. (C) Individual subject latencies for the onset of a significant correlation between each of the three models and the MEG RDM (left
panel), and the timepoint corresponding to the peak correlation between each model and the MEG RDM (right panel). (D) Group-level correlations between the MEG RDM and each of
these three model RDMs. Colored lines are time-varying correlations between model predictions and MEG decoding performance averaged across subjects (shaded region: ± 1 SEM).
Dashed and dotted lines represent the ‘noise ceiling’ (Nili, et al., 2014), see Materials and methods for definition and calculation. Colored disks below the plots indicate a significant
correlation, evaluated using a Wilcoxon signed rank test (FDR b 0.01). Symbols above the plots indicate a significant difference between the models: diamonds: retinal envelope vs.
V1, crosses (X): perceptual vs. V1, asterisks (*): perceptual vs. retinal envelope. The black bar on the x-axis indicates the stimulus duration (0–250 ms).
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decodingwithMEG (Duncan et al., 2010; Ramkumar, et al. 2013). Anal-
ogous to fMRI results (Alink et al., 2013), decoding was moderated by
orientation coherence among the elements, because stimulus pairs
with an equivalent local disparity but an absence of a coherent global
orientation could not be decoded (Fig. Fig. 6B, green trace; Fig. 1, set
2). Although only coherent stimuli could be decoded, the difference be-
tween the coherent and incoherent waveforms only reached signifi-
cance at sporadic time points (Wilcoxon rank-sum FDR p b 0.01,
asterisks above the plot in Fig. 6B), suggesting that incoherent stimuli
could probably be decoded with increased statistical power (for exam-
ple, in a comparable experiment with less exemplars). However, when
considered in conjunctionwith the comparisonsmade below for stimuli
differing in global shape, this pattern of results suggests that grouping
across local elements may be an important component of the underly-
ing neural representation.

Orientation decoding with fMRI has been suggested to be a
byproduct of the radial bias — the greater number of neurons
representing orientations pointing toward the fovea (Levick and
Thibos, 1982; Leventhal and Schall, 1983; Schall et al., 1986; Sasaki
et al., 2006; Mannion et al., 2010), however, this issue remains contro-
versial (e.g. Carlson, 2014; Freeman et al., 2011; Freeman et al., 2013;
Mannion et al., 2009; Alink et al., 2013; Maloney, 2015; Clifford and
Mannion, 2015; Carlson and Wardle, 2015). We found that a RDM
modeled on inter-stimulus differences in the radial bias did not fit the
MEG data; the radial preference model never reached significance at
any time point (Fig. Fig. 6A). In addition to the failure of the radial pref-
erencemodel, we found that decoding of stimulus pairs designed to test
for radial bias effects was instead moderated by differences in their
global form. Stimuli that were matched for the magnitude of the radial
bias that had similar global form (within-shape decoding of stars or spi-
rals; see radially balanced pairs in Fig. 1, set 4) could not be decoded
(Fig. 6C, green trace). However, these radially-balanced stimuli could
be decoded in between-shape pairs (i.e.: across shape decoding of
stars versus spirals) in which they differed in global form (Fig. 6C,
blue trace). The difference between the within-and between-shape
conditions was significant for the majority of the stimulus duration
(Wilcoxon rank-sum FDR p b 0.01; significant timepointsmarked by as-
terisks (*) above the plot in Fig. 6C). Furthermore, the ‘opposite bias’
stimulus pair that was maximally different with respect to the radial
bias (strong [spokes] versus weak [rings], see final pair in set 4, Fig. 1)
could be decoded (Fig. 6C, black trace), and was significantly different
than thewithin-shape pair formost of the stimulus duration (diamonds
above plots in Fig. 6C). However, decoding performance for the opposite
bias pair was not substantially better than the between-shape pair that
were radially balanced but differed in global form (crosses above Fig. 6C,
only sporadic time points are different). As only the between-shape and
opposite-bias pairs (that also differed substantially in global form)were
decodable, these results may be interpreted as additional support for
the importance of global form in the neural representation.

Although differences in the radial bias did not appear to modulate
decodability in our stimulus set, it is established that radially balanced
patterns can be decoded from fMRI (e.g. Mannion et al., 2009;
Freeman et al., 2013; Alink et al., 2013). We speculate that the reason
we were unable to decode radially balanced spirals is likely because
we are decoding whole-brain MEG activation patterns for a relatively
large stimulus set (n = 26). Decoding of spirals with fMRI has been
done from isolated activity in visual cortex and a small number of stim-
uli (n=2–8). Consistentwith this explanation, radially balanced spirals
have recently been decoded with MEG as part of a smaller stimulus set
(n = 4 stimuli) (Cichy et al., 2015).

Discussion

Our main finding is that the perceived similarity of visual patterns
predicts their representational similarity in whole-brain neural activa-
tion patterns measured with MEG. We observed that perceptual simi-
larity ratings reached the limits of the highest possible correlation
with the representational structure measured with MEG as early as
150 ms after stimulus onset, and the success of the model persisted
for several hundred milliseconds beyond stimulus offset. This demon-
strates that differences in perceived global form are matched by equiv-
alent differences in neural representational distance. The perceptual
RDM based on human ratings of similarity reached the lower bounds
of the ‘noise ceiling’ (Nili et al., 2014), which indicates that the percep-
tual RDM explained as much of the variability in the similarity of the
brain activation patterns elicited by the visual stimuli as the unknown
true model. The noise ceiling provides a guide for settling on a satisfac-
tory model within the RSA framework: when the bounds of the noise
ceiling are reached it indicates that the model provides as complete an
explanation for the data as is possible within the limits set by the
noise in the data.

Previously, two computational models have been reported which
reach or closely approximate the noise ceiling. A computational model
based on a supervised deep convolutional neural network reached the
lower bounds of the noise ceiling for explaining fMRI activation patterns
for a diverse set of objects in human IT (Khaligh-Razavi & Kriegeskorte,
2014). Similarly, a biologically-plausible hierarchical convolutional neu-
ral network model approached the lower limits of the noise ceiling for
neural data from monkey IT in response to a large set of object stimuli
(Yamins et al., 2014). Building on the success of these computational
models, the perceptual RDM reported here is the first behavioral
model to our knowledge within the RSA framework that reaches the
noise ceiling. The correlation we observe between behavioral similarity
ratings and MEG activation patterns is consistent with several earlier
studies that have observed a correspondence between behavioral rat-
ings and fMRI activation patterns (e.g. Edelman et al. 1998; Mur et al.
2013; Connolly et al. 2012; Hiramatsu et al. 2011; Op de Beeck et al.,
2008).

The strong correspondencewe observed between behavior andneu-
ral representation is a reflection of our stimulus set,whichwas designed
to probe the neural representation of global form while controlling for
low-level visual features. As all stimuli were constructed from identical
visual features (Gabor patches), we assume that observers based their
similarity judgments on the overall global form or Gestalt of each pat-
tern created by the particular arrangement of Gabor patches. The fact
that global form is the most salient difference between our stimuli is
also consistent with the relatively poor performance of the V1 model
based on HMAX. We suggest that the poor performance of the V1
model is likely because it weights local orientation differences highly
while ignoring global form, and local orientation differences were a
poor predictor of decodability. The best performing model assessed
using RSA is always relative to the stimulus set, thus in order to demon-
strate a tight link between perceptual similarity and neural activation
patterns, it is necessary to use stimuli in which differences in global
form are separated from both semantic similarity and low level visual
parameters.

Similarly, Mur et al. (2013) used RSA and found that human similar-
ity judgments for higher-level object stimuli did show similarity with
categorical divisions in representational structure in IT; however, in
this case the similarity judgments contained additional structure not
present in the neural representation. The human judgments showed a

Fig. 5. Average decodability across four layers of HMAX. Each row A–D shows the model predictions (left panel) and the time-varying correlation between the model and the MEG data
(right panel) separately for a level of HMAX (S1, C1, S2, C2). Panels on the left show themodel RDM's for the fourHMAX layers. Color values in theRDMrepresent thedissimilarity between
the pairs of patterns as predicted by the assumptions of eachmodel layer. Panels on the right show themodel correlation withMEG decoding performance. Plotted is the Spearman rank-
order correlation between the model RDM and the time-varying MEG decoding RDMs. The solid line is the average correlation across subjects. The shaded region is ±1 SEM. Asterisks
below the plot indicate a significant correlation, evaluated using a Wilcoxon signed rank test (FDR b 0.01).
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tighter categorical clustering than the fMRI data, and contained a finer
grain of categorical distinctions. In theMur et al. (2013) study, similarity
judgments were likely based on both semantic and visual characteris-
tics, as the stimuli were pictures of objects, which have inherent
conceptual meaning. The visual stimuli we used were abstract, thus
we assume observers' similarity judgments were based solely on per-
ceived visual similarity.

Overall the perceptual RDM provided the best explanation of
the variance in the MEG data, however; early after stimulus onset
(50 ms), a simple model based on retinal stimulation predicted
decodability as well as the perceptual RDM for a short time window
(approx. 50 ms) before its performance fell. We interpret the steep si-
multaneous rise in explanatory power of the retinal envelope model
and the perceptual RDM soon after stimulus onset as a reflection of
the overlap between low-level stimulus similarity and perceptual simi-
larity. It is intuitive that low-level features of abstract visual patterns
such as retinotopic stimulation, and local regions of luminance and con-
trast, are part of what makes stimuli appear perceptually similar to
human observers The ratings of perceptual similarity made by human
observers can be thought of as a ‘shortcut’ to identifying the perceptual-
ly relevant stimulus features that are important in the neural represen-
tation. Our data is consistent with previous fMRI results, which show
that the relationship between perceived similarity and the similarity
of activation patterns cannot be completely explained by similarities
in retinal stimulation. Op de Beeck et al. (2008) controlled for retinal
envelope by constructing novel objects that varied systematically in
both their overall shape envelope (e.g. tall vs. long) and their shape
(e.g. sharp vs. curved edges). Notably, Op de Beeck et al. (2008) jittered

the retinal position of their shape stimuli, which was constant in our
study. Op de Beeck et al. found that fMRI activation patterns for novel
objects in LOC were more correlated with perceived shape similarity
(e.g. sharp vs. curved edges) than with the similarity in their shape en-
velope. This is also consistent with fMRI adaptation to stimuli of the
same shape that have different local contours (Kourtzi & Kanwisher,
2001).

Our finding that whole-brain activation patterns reflect perceptually
important features is consistent with recent neurophysiological and
neuroimaging studies suggesting that the representation of visual in-
puts changes throughout the visual stream. These studies have shown
that the representation in early visual areas reflects low-level visual fea-
tures such as image statistics (Clarke and Tyler, 2014; Hiramatsu, et al.
2011). In higher visual brain regions, the representation is instead
based on higher-level features such as object category membership
(Edelman et al., 1998; Clarke and Tyler, 2014), perceived face identity
(Rotshtein et al., 2005), or shape similarity (Kourtzi & Kanwisher,
2001; Op de Beeck et al., 2001, 2008; Haushofer et al., 2008). Further-
more, differences in image statistics are diagnostic of the degree of
dissimilarity of large-scale activation patterns measured with EEG
(Groen et al., 2012). The early success of the retinal envelope model in
predicting the decodability of our stimuli (peak performance just
80 ms after stimulus onset) is consistent with the dominance of early
visual features (such as contrast) in the representational structure di-
rectly after stimulus onset, which later evolves into a representation
highly correlated with perceptual similarity.

Although the perceptual RDM was a strong predictor of the MEG
data, the behavioral similarity ratings and the MEG data were collected

Fig. 6. Orientation and the radial bias. (A) Top: Model RDMs for orientation disparity and radial preference. Hatched regions mark the undefined predictions for each model; both
orientation disparity and radial preference were only calculated for the patterns with all 48 elements in corresponding retinal locations. Bottom: Correlation between model RSMs and
the MEG RDM (details as in Fig. 4D). (B) Orientation: Average decodability for all pairwise comparisons (n = 6) between the four patterns that have a coherent global orientation
(blue trace), and average decodability (n = 6) for the four ‘random’ patterns which have equivalent local orientation disparity without coherent global orientation (green trace).
(C) Radial bias: Average decoding accuracy for the two radially balanced pairs of the same shape — stars or spirals (green trace); average decoding accuracy for the four possible
between-shape pairs (blue trace); and decodability for the stimuli differing in the strength of the radial bias (black trace). Errors are ±1 SEM. Colored discs below each plot indicate
time points with significant decoding (matched to color of individual traces). Symbols above each plot indicate a significant difference between conditions at that timepoint:
diamonds: within vs. opposite, crosses (X): between vs. opposite, asterisks (*): between vs. within.
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from independent groups of subjects, and the behavioral task involved a
relatively coarse judgment of similarity for each pair of stimuli on a scale
from 1 to 100. The use of separate subjects for neural and behavioral
data collection is common in RSA studies, and a strength of the RSA ap-
proach is its ability to examine representational structure across differ-
ent subjects and methodologies. Future work will determine whether
this can be achieved at finer scales (for example, fine perceptual dis-
criminations). A further implication of the success of the behavioral
data in predicting the neural representation (from a separate pool of
subjects) is that it provides empirical validation of the common as-
sumption that the structure of brain representations can be inferred
from behavioral research. Individually the behavioral and MEG study
would have reached the same conclusion; however, the bridging of
the two studies using the RSA framework strengthens the conclusion
and validates each approach (behavior and neuroimaging).

A recent paper in NeuroImage also decoded gratings fromMEG acti-
vation patterns (Cichy et al., 2015), however; the authors drawdifferent
conclusions. In fMRI, a decade-long debate over the information source
underlying orientation decoding from patterns of BOLD activation per-
sists (e.g. Kamitani & Tong, 2005; Haynes & Rees, 2005; Mannion
et al., 2009; Swisher et al, 2010; Freeman et al., 2011; Freeman et al.,
2013; Alink et al., 2013; Carlson, 2014; Maloney, 2015; Clifford and
Mannion, 2015; Carlson and Wardle, 2015). As orientation columns
are at a finer scale than fMRI voxels, it has been suggested that orienta-
tion decoding from V1 is evidence that finer-scale information can be
accessed at the level of cortical columns with multivariate fMRI
(Kamitani& Tong, 2005). Alternatively, others have argued that orienta-
tion decoding with fMRI can be explained by coarse-scale biases across
voxels (Freeman et al., 2011, 2013) or edge-related activity (Carlson,
2014). Cichy et al. (2015) decoded gratings from MEG activation pat-
terns using several stimulus controls, and in conjunction with theoreti-
cal simulations to demonstrate technical plausibility, conclude that it is
likely that the decodable orientation information in their MEG signals
originates from the spatial scale of cortical columns. In contrast to
BOLD activation, MEG activation patterns cannot be unambiguously
spatially localized to early visual cortex, adding a level of difficulty to
identifying the spatial scale of the decodable MEG signal. Cichy et al.
(2015) suggest that the early onset of orientation decoding (~50 ms)
in their experiments is consistent with a locus in early visual cortex;
however, we also observe an early onset of decoding (~40 ms) and
found that the perceptual RDM significantly correlated with the MEG
RDM as early as 50 ms. As our results underscore the importance of
global form and perceptual similarity in the decodable MEG signal
(in contrast to the relative underperformance of the orientation and
V1 models), we suggest caution in interpreting the source of decodable
orientation information in MEG signals as originating from the scale of
cortical columns.

Conclusions

We found that visual stimuli that were perceived to look more sim-
ilar to each other by human observers also had more similar complex
neural activation patterns as measured with MEG. The behavioral
model was a near-optimal predictor of neural representational similar-
ity, and closely tracked the maximum possible correlation with the
neural data from just 150 ms post-stimulus onset. The results show
that the perceptual Gestalt of an image is captured in coarse-scale
neuromagnetic activation patterns, and thus provide evidence that per-
ceived similarity can indeed be conceptualized as representational
distance. The decodable MEG signal emerges from complex neural ac-
tivity at multiple scales throughout the visual processing hierarchy,
and it is both remarkable and logical that the representational geometry
of this pooled neural activity represents an end-stage as advanced as
human judgments of perceived similarity.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2016.02.019.
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